【題目】如圖,在RtABC, ,,,直線l從與AC重合的位置開始以每秒個(gè)單位的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于D,E兩點(diǎn),動(dòng)點(diǎn)FA開始沿折線ACCBBA運(yùn)動(dòng),點(diǎn)FACCB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位,點(diǎn)F與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)F第一次回到點(diǎn)A時(shí),點(diǎn)F與直線 l同時(shí)停止運(yùn)動(dòng).運(yùn)動(dòng)過(guò)程中,作點(diǎn)F關(guān)于直線DE的對(duì)稱點(diǎn),記為點(diǎn),若形成的四邊形 為菱形,則所有滿足條件的之和為_________

【答案】

【解析】

首先結(jié)合題意畫出圖形,然后根據(jù)菱形的性質(zhì)和相似三角形的性質(zhì)分別從兩種情況當(dāng)P點(diǎn)在AC上時(shí)和當(dāng)PAB上時(shí)去分析求解,即可求得t的值.

如圖1,當(dāng)P點(diǎn)在AC上時(shí),(0<t≤2)

AP=3tPC=6-3t,EC=t,

BE=8-t

EFAC,

∴△FEB∽△ACB,

,

EF=6-t

∵四邊形PEQF是菱形,

∴∠POE=90°,OE=EF=3-t,

EFAC,∠C=90°,

∴∠OEC=90°,

∴四邊形PCEO是矩形,

OE=PC

3-t=6-3t,

t=

如圖2,當(dāng)PAB上時(shí)(4t6),

∵四邊形PFQE是菱形,

PE=PF,

∴∠PFE=PEF

EFAC,∠C=90°,

∴∠FEB=FEP+∠PEB=90°,

∴∠B+∠EFB=90°,

∴∠B+∠FEP=90°,

∴∠PEB=B

PE=PB

PB=5t-4),

BF=10t-4),

sinB=,

,

EF=6t-24

CE=t,

BE=8-t

∵△FEB∽△ACB,

,

EF=6-t

6-t=6t-24

解得t=;

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=DAC上一點(diǎn),DEAB于點(diǎn)EAC=12,BC=5

1的值;

2當(dāng)時(shí),求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的周長(zhǎng)為28,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為(  )

A.28B.12C.13D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線的圖像經(jīng)過(guò)點(diǎn)A(1,0),B(0,5),

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為C,求出點(diǎn)C的坐標(biāo);并確定在拋物線上是否存在一點(diǎn)E,使△BCE是以BC為斜邊的直角三角形?若存在,在圖中做出所有的點(diǎn)E(不寫畫法,保留作圖痕跡);若不存在,說(shuō)明理由;

(3)點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn)(P點(diǎn)不與B點(diǎn)和C點(diǎn)重合),過(guò)點(diǎn)Px軸的垂線,交拋物線于點(diǎn)M,點(diǎn)Q在直線BC上,距離點(diǎn)P個(gè)單位長(zhǎng)度,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PMQ的面積為S,求出St之間的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,⊙O的半徑,弦AB,CD交于點(diǎn)EC的中點(diǎn),過(guò)D點(diǎn)的直線交AB延長(zhǎng)線與點(diǎn)F,且DF=EF

1)如圖①,試判斷DF與⊙O的位置關(guān)系,并說(shuō)明理由;

2)如圖②,連接AC,若ACDF,BE=AE,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax+2)(x-4)(a為常數(shù),且a0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線y=-x+b與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為-5

1)求拋物線的函數(shù)表達(dá)式;

2P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB,求△PBD面積的最大值;

3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=10,BC、CD、DA是⊙O的弦,且BC=CD=DA,若點(diǎn)P是直徑AB上的一動(dòng)點(diǎn),則PD+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2﹣2x+3.

(1)把函數(shù)關(guān)系式配成頂點(diǎn)式并求出圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸.

(2)若圖象與x軸交點(diǎn)為A.B,與y軸交點(diǎn)為C,求A、B、C三點(diǎn)的坐標(biāo);

(3)在圖中畫出圖象.并求出△ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABCRtADE,∠BAC=∠DAE=90°,ABDE相交于點(diǎn)F,連接DBCE

(1),AFD的度數(shù)

(2)ADE=∠ABC,求證ADBAEC

查看答案和解析>>

同步練習(xí)冊(cè)答案