【題目】如圖所示,AB⊙O的直徑,C、D⊙O上的點,且OC∥BD, AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是(

A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤

C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥

【答案】B

【解析】

由直徑所對圓周角是直角可以判斷,由于∠AOCO的圓心角,∠AECO的圓內(nèi)部的角,由此可以判斷,由平行線得到∠OCB=DBC,再由同圓的半徑相等得到結(jié)論判斷出∠OBC=DBC

用半徑垂直于不是直徑的弦,必平分弦判斷;

用三角形的中位線可以得到結(jié)論;

得不到△CEF和△BED中對應(yīng)相等的邊,所以不一定全等.

ABO的直徑,∴∠ADB=90°,∴ADBD,故正確;

∵∠AOCO的圓心角,∠AECO的圓內(nèi)部的角,∴∠AOC≠∠AEC,故不正確;

OCBD,∴∠OCB=DBC

OC=OB,∴∠OCB=OBC,∴∠OBC=DBC,∴BC平分∠ABD,故正確;

ABO的直徑,∴∠ADB=90°,∴ADBD

OCBD,∴∠AFO=90°.

∵點O為圓心,∴AF=DF,故正確;

有,AF=DF

∵點OAB中點,∴OF是△ABD的中位線,∴BD=2OF,故正確;

∵△CEF和△BED中,沒有相等的邊,∴△CEF與△BED不全等,故不正確;

綜上可知:其中一定成立的有①③④⑤

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點分別從A,B同時出發(fā),點P沿折線AB﹣BC運動,在AB上的速度是2cm/s,在BC上的速度是2cm/s;點Q在BD上以2cm/s的速度向終點D運動,過點P作PN⊥AD,垂足為點N.連接PQ,以PQ,PN為鄰邊作PQMN.設(shè)運動的時間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2

(1)當PQ⊥AB時,x等于多少;

(2)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

(3)直線AM將矩形ABCD的面積分成1:3兩部分時,直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線的表達式為線段AB的兩個端點分別為A(1,2),B(3,2)

(1)若拋物線經(jīng)過原點,求出的值;

(2)求拋物線頂點C的坐標(用含有m的代數(shù)式表示);

(3)若拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象,求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長為28,對角線ACBD相交于點O,點ECD的中點,BD=12,則△DOE的周長為(  )

A.28B.12C.13D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊BCAB的長分別為45,把它的左上角如圖所示折疊.點A恰好落在CD邊上的點F處,折痕為BE,則DE的長為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線的圖像經(jīng)過點A(1,0),B(0,5),

(1)求這個拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一個交點為C,求出點C的坐標;并確定在拋物線上是否存在一點E,使△BCE是以BC為斜邊的直角三角形?若存在,在圖中做出所有的點E(不寫畫法,保留作圖痕跡);若不存在,說明理由;

(3)點P是直線BC上的一個動點(P點不與B點和C點重合),過點Px軸的垂線,交拋物線于點M,Q在直線BC上,距離點P個單位長度,設(shè)點P的橫坐標為t,△PMQ的面積為S,求出St之間的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,⊙O的半徑,弦AB,CD交于點E,C的中點,過D點的直線交AB延長線與點F,且DF=EF

1)如圖①,試判斷DF與⊙O的位置關(guān)系,并說明理由;

2)如圖②,連接AC,若ACDFBE=AE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=10,BC、CD、DA是⊙O的弦,且BC=CD=DA,若點P是直徑AB上的一動點,則PD+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺按圖1擺放,等腰直角三角尺的直角邊DF恰好垂直平分AB,與AC相交于點G,

(1)求GC的長;

(2)如圖2,將△DEF繞點D順時針旋轉(zhuǎn),使直角邊DF經(jīng)過點C,另一直角邊DE與AC相交于點H,分別過H、C作AB的垂線,垂足分別為M、N,通過觀察,猜想MD與ND的數(shù)量關(guān)系,并驗證你的猜想.

(3)在(2)的條件下,將△DEF沿DB方向平移得到△D′E′F′,當D′E′恰好經(jīng)過(1)中的點G時,請直接寫出DD′的長度.

查看答案和解析>>

同步練習(xí)冊答案