【題目】如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3 ,且AC=12,則DE的長度是( )
A. 3B. 6C. D.
【答案】D
【解析】
根據(jù)∠EDC:∠EDA=1:3,可得∠EDC=22.5°,∠EDA=67.5°,再由AC=12,求得DE.
解:∵四邊形ABCD是矩形,
∴∠ADC=90°,AC=BD=12,OA=OC=AC=6,OB=OD=BD=6,
∴OC=OD,
∴∠ODC=∠OCD,
∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,
∴∠EDC=22.5°,∠EDA=67.5°,
∵DE⊥AC,
∴∠DEC=90°,
∴∠DCE=90°-∠EDC=67.5°,
∴∠ODC=∠OCD=67.5°,
∵∠ODC+∠OCD+∠DOC=180°,
∴∠COD=45°,
∴OE=DE,
∵OE2+DE2=OD2,
∴2DE2=OD2=36,
∴DE=,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B在數(shù)軸上對應(yīng)的數(shù)分別用、表示,且.
(1)數(shù)軸上點A表示的數(shù)是 ,點B表示的數(shù)是
(2)若一動點P從點A出發(fā),以3個單位長度/秒速度由A向B運動;動點Q從原點O出發(fā),以1個單位長度/秒速度向B運動,點P、Q同時出發(fā),點Q運動到B點時兩點同時停止.設(shè)點Q運動時間為t秒.
①若P從A到B運動,則P點表示的數(shù)為 ,Q點表示的數(shù)為 .用含的式子表示)
②當(dāng)t為何值時,點P與點Q之間的距離為2個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù),有下列說法:
①如果當(dāng)x≤1時隨的增大而減小,則m≥1;
②如果它的圖象與x軸的兩交點的距離是4,則;
③如果將它的圖象向左平移3個單位后的函數(shù)的最小值是-4,則m=-1;
④如果當(dāng)x=1時的函數(shù)值與x=2013時的函數(shù)值相等,則當(dāng)x=2014時的函數(shù)值為-3.
其中正確的說法是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建國七十周年,南崗區(qū)準(zhǔn)備對某道路工程進(jìn)行改造,若請甲工程隊單獨做此工程需4個月完成,若請乙工程隊單獨做此工程需6個月完成,若甲、乙兩隊合作2個月后,甲工程隊到期撤離,則乙工程隊再單獨需幾個月能完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春雨初歇,綠意蔥蘢,重慶南開(融僑)中學(xué)初2020級舉行了“春天的贊禮”為主題的合唱比賽,各班演唱歌曲的曲風(fēng)有:青春舞曲、經(jīng)典名曲、動漫神曲、勵志金曲四種類型,為了了解同學(xué)們對各種曲風(fēng)的喜愛程度。校學(xué)生處對大眾評委喜愛的歌曲曲風(fēng)進(jìn)行了調(diào)查,(A—喜愛青春舞曲、B—喜愛經(jīng)典名曲、C—喜愛動漫神曲、D—喜愛勵志金曲),先根據(jù)調(diào)查得到如下圖不完整的統(tǒng)計圖,請結(jié)合圖中信息完成下列問題:
扇形統(tǒng)計圖中“C—喜愛動漫神曲”對應(yīng)扇形圓心角為【1】度,并補全條形統(tǒng)計圖.
在此次比賽中,甲班演唱的《四季問候》和乙班演唱的《東方之珠》獲得一等獎,《司機問候》由2名男生和2名女生領(lǐng)唱,《東方之珠》由1名男生和2名女生領(lǐng)唱,校學(xué)生處打算分別從這兩首歌曲的領(lǐng)唱中任意選取1名同學(xué)參加校合唱團,請用畫樹狀圖或列表的方法求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩實數(shù)a與b,M=+,N=2ab
(1)請判斷M與N的大小,并說明理由。
(2)請根據(jù)(1)的結(jié)論,求 + +3的最小值(其中x,y均為正數(shù))
(3)請判斷++abacbc的正負(fù)性(a,b,c為互不相等的實數(shù))
(4)若n為正整數(shù),則(n+1)(n+4)(n2+5n)+4的值為某一個整數(shù)的平方,試說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com