【題目】如圖,已知,,,,平分
(1)說(shuō)明:;(2)求的度數(shù).
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)由DC∥FP知∠3=∠2=∠1,可得DC∥AB;
(2)由(1)利用平行線的判定得到AB∥PF∥CD,根據(jù)平行線的性質(zhì)得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知條件即可求出∠PFH的度數(shù).
解:(1)∵DC∥FP,
∴∠3=∠2,
又∵∠1=∠2,
∴∠3=∠1,
∴DC∥AB;
(2)∵DC∥FP,DC∥AB,∠DEF=30°,
∴∠DEF=∠EFP=30°,AB∥FP,
又∵∠AGF=80°,
∴∠AGF=∠GFP=80°,
∴∠GFE=∠GFP+∠EFP=80°+30°=110°,
又∵FH平分∠EFG,
,
∴∠PFH=∠GFP-∠GFH=80°-55°=25°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年是“精準(zhǔn)扶貧”攻堅(jiān)關(guān)鍵年,某扶貧工作隊(duì)為對(duì)口扶貧村引進(jìn)建立了一村集體企業(yè),并無(wú)償提供一筆無(wú)息貸款作為啟動(dòng)資金,雙方約定:①企業(yè)生產(chǎn)出的產(chǎn)品全部由扶貧工作隊(duì)及時(shí)聯(lián)系商家收購(gòu);②企業(yè)從生產(chǎn)銷售的利潤(rùn)中,要保證按時(shí)發(fā)放工人每月最低工資32000元.已知該企業(yè)生產(chǎn)的產(chǎn)品成本為20元/件,月生產(chǎn)量y(千件)與出廠價(jià)x(元)(25≤x≤50)的函數(shù)關(guān)系可用圖中的線段AB和BC表示,其中AB的解析式為y=﹣x+m(m為常數(shù)).
(1)求該企業(yè)月生產(chǎn)量y(千件)與出廠價(jià)x(元)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)當(dāng)該企業(yè)生產(chǎn)出的產(chǎn)品出廠價(jià)定為多少元時(shí),月利潤(rùn)W(元)最大?最大利潤(rùn)是多少?[月利潤(rùn)=(出廠價(jià)﹣成本)×月生產(chǎn)量﹣工人月最低工資].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓弧().
(1)用直尺和圓規(guī)作出所在圓的圓心;(要求保留作圖痕跡,不寫作法)
(2)若的中點(diǎn)到的距離為m,m,求所在圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向不斷地移動(dòng),每次移動(dòng)1個(gè)單位長(zhǎng)度,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么點(diǎn)A2 019的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD內(nèi)有一點(diǎn)P滿足AP=AB,PB=PC,連接AC、PD.
求證:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2,正確的個(gè)數(shù)為
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,已知,動(dòng)點(diǎn)同時(shí)從兩點(diǎn)出 發(fā),分別沿方向勻速移動(dòng),動(dòng)點(diǎn)的速度是,動(dòng)點(diǎn)的速度是,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng),連接,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,試解答下面的問(wèn)題:
當(dāng)時(shí),求的面積?
當(dāng)為何值時(shí),點(diǎn)在線段的垂直平分線上?
是否存在某一時(shí)刻,使點(diǎn)在的角平分線上,若存在,請(qǐng)求出的值;若不存 在,請(qǐng)說(shuō)明理由?
請(qǐng)用含有的代數(shù)式表示四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一條件下,對(duì)同一型號(hào)的汽車進(jìn)行耗油1升所行駛路程的實(shí)驗(yàn),將收集到的數(shù)據(jù)作為一個(gè)樣本進(jìn)行分析,繪制出部分頻數(shù)分布直方圖和部分扇形統(tǒng)計(jì)圖.如下圖所示(路程單位:km)
結(jié)合統(tǒng)計(jì)圖完成下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中,表示12.5≤x<13部分的百分?jǐn)?shù)是 ;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整,這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第 組;
(3)哪一個(gè)圖能更好地說(shuō)明一半以上的汽車行駛的路程在13≤x<14之間?哪一個(gè)圖能更好地說(shuō)明行駛路程在12.5≤x<13的汽車多于在14≤x<14.5的汽車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為D,連接AD,BD.
(1)依據(jù)題意補(bǔ)全圖形;
(2)當(dāng)∠PAC等于多少度時(shí),AD∥BC?請(qǐng)說(shuō)明理由;
(3)若BD交直線AP于點(diǎn)E,連接CE,求∠CED的度數(shù);
(4)探索:線段CE,AE和BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com