【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為(

A.28B.24C.20D.16

【答案】B

【解析】

EEMFAFA的延長線于M,過CCNABAB的延長線于N,根據(jù)全等三角形的性質(zhì)得到EMCN,于是得到SAEFSABC8,同理SCDJSBHGSABC8,于是得到結(jié)論.

解:過EEMFAFA的延長線于M,過CCNABAB的延長線于N,

∴∠M=∠N90°,∠EAM+MAC=∠MAC+CAB90°,

∴∠EAM=CAB

∵四邊形ACDE、四邊形ABGF是正方形,

∴AC=AE,AFAB,

∴∠EAM≌△CAN

EMCN,

AFAB,

SAEFAFEMSABCABCN8,

SAEFSABC8,

同理SCDJSBHGSABC8,

∴圖中陰影部分的面積=3×824,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時,BE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線 y=ax2 -2ax+4(a<0) x 軸于點(diǎn) A、B,與 y 軸交于點(diǎn) C,AB=6

1)如圖 1,求拋物線的解析式;

2 如圖 2,點(diǎn) R 為第一象限的拋物線上一點(diǎn),分別連接 RB、RC,設(shè)RBC 的面積為 s,點(diǎn) R 的橫坐標(biāo)為 t,求 s t 的函數(shù)關(guān)系式;

3)在(2)的條件下,如圖 3,點(diǎn) D x 軸的負(fù)半軸上,點(diǎn) F y 軸的正半軸上,點(diǎn) E OB 上一點(diǎn),點(diǎn) P 為第一象限內(nèi)一點(diǎn),連接 PD、EF,PD OC 于點(diǎn) G,DG=EF,PDEF,連接 PE,∠PEF=2PDE,連接 PB、PC,過點(diǎn)R RTOB 于點(diǎn) T,交 PC 于點(diǎn) S,若點(diǎn) P BT 的垂直平分線上,OB-TS=,求點(diǎn) R 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yx24x+3

1)求其圖象與x軸交點(diǎn)A、B的坐標(biāo)(AB左邊);

2)在坐標(biāo)系中畫出函數(shù)圖象;

3)若函數(shù)圖形的頂點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,直徑DEAB于點(diǎn)F,交BC于點(diǎn) MDE的延長線與AC的延長線交于點(diǎn)N,連接AM

1)求證:AMBM;

2)若AMBM,DE8,∠N15°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2+xy+y12,y2+xy+x18,求代數(shù)式3x2+3y22xy+x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0, )為圓心,以 長為半徑作⊙Mx軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),連接AM并延長交⊙MP點(diǎn),連接PCx軸于E.

(1)求出CP所在直線的解析式;

(2)連接AC,請求△ACP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,燈在距地面6米的A處,與燈柱AB相距3米的地方有一長3米的木棒CD直立于地面.

1)在圖中畫出木棒CD的影子,并求出它的長度;

2)當(dāng)木棒繞其與地面的固定端點(diǎn)D按順時針方向旋轉(zhuǎn)到地面時,其影子的變化有什么規(guī)律?你能求出其影長的取值范圍嗎?

查看答案和解析>>

同步練習(xí)冊答案