【題目】如圖,已知正方形ABCD的邊長為10cm,點E在邊AB上,且AE=4cm,
(1)如果點P在線段BC上以2cm/s的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請說明理由.
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為________cm/s時,在某一時刻也能夠使△BPE與△CQP全等.
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD的四條邊運動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在何處?
【答案】(1)是,4.8;(2)經(jīng)過秒點P與點Q第一次在A點相遇.
【解析】
試題正方形的四邊相等,四個角都是直角.(1)①速度相等,運動的時間相等,所以距離相等,根據(jù)全等三角形的判定定理可證明.②因為運動時間一樣,運動速度不相等,所以BP≠CQ,只有BP=CP時才相等,根據(jù)此可求解.
(2)知道速度,知道距離,這實際上是個追及問題,可根據(jù)追及問題的等量關(guān)系求解.
試題解析:(1)①∵t=1秒,
∴BP=CQ=4×1=4厘米,
∵正方形ABCD中,邊長為10厘米
∴PC=BE=6厘米,
又∵正方形ABCD,
∴∠B=∠C,
∴△BPE≌△CQP
②∵VP≠VQ,∴BP≠CQ,
又∵△BPE≌△CQP,∠B=∠C,則BP=PC,
而BP=4t,CP=10-4t,
∴4t=10-4t
∴點P,點Q運動的時間t=秒,
∴vq=6÷=4.8厘米/秒.
(2)設(shè)經(jīng)過x秒后點P與點Q第一次相遇,
由題意,得4.8x-4x=30,
解得x=秒.
∴點P共運動了×4=150厘米
∴點P、點Q在A點相遇,
∴經(jīng)過秒點P與點Q第一次在A點相遇.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn)
小明在學(xué)習(xí)魯教版八年級上冊97頁例4時,受到啟發(fā)進行如下數(shù)學(xué)實驗操作:
如圖1,取一個銳角為45°的三角尺,把銳角頂點放在正方形ABCD的頂點D處,將三角尺繞點D旋轉(zhuǎn)一個角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點E和點F,連接FE,在繞點D旋轉(zhuǎn)過程中,發(fā)現(xiàn)線段AE,EF,CF滿足EF=AE+CF的數(shù)量關(guān)系,但是不會進行證明,數(shù)學(xué)張老師給他如下的提示:把△ADE繞點D逆時針旋轉(zhuǎn)90°至△DCE’的位置,小明畫旋轉(zhuǎn)后的圖形,利用全等的知識證明了出來.你根據(jù)上面的提示畫出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進行證明.
問題探究
小明的探究引發(fā)了老師的興趣,老師將三角尺繞點D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長線于點E和點F,老師問題小明此時AE,EF,CF滿足什么數(shù)量關(guān)系,小明思考后說出了正確的結(jié)論.請同學(xué)們直接寫出正確結(jié)論(不用寫出證明過程).
拓展延伸
張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗,解答下面的問題:
如圖3已知正方形ABCD,點E在邊AB上,點F在邊BC上,且∠EDF=45°,若CD=6,AE=2,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點G是BC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.
(1)如圖1,求證:AE=BF;
(2)連接DF,若tan∠BAG=,AB=2,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點都在格點上,每個格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標系.
(1)畫出四邊形 ABCD 關(guān)于 y 軸對稱和四邊形 A′B′C′D′(點 A、B、C、D的對稱點分別是點 A′B′C′D′.
(2)求 A、B′、B、C 四點組成和四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場購買某種圖書.第一次用元購書若干本,并按該書定價元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了,他用元所購該書數(shù)量比第一次多本.
(1)求兩次購書的價格分別是多少?
(2)若第二次購書按定價售出本時,出現(xiàn)滯銷,于是決定打折出售剩下這批書,那么該商家最低打幾折才能保證剩下書的利潤率不低于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知雙曲線y=(x<0)和y=(x>0),直線OA與雙曲線y=交于點A,將直線OA向下平移與雙曲線y=交于點B,與y軸交于點P,與雙曲線y=交于點C,S△ABC=6,=,則k=( 。
A. ﹣6 B. ﹣4 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點為網(wǎng)格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關(guān)于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AB邊上一點,E為CD中點,AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長為( 。
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com