【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買某種圖書(shū).第一次用元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)元出售,很快售完.由于該書(shū)暢銷,第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了,他用元所購(gòu)該書(shū)數(shù)量比第一次多本.

1)求兩次購(gòu)書(shū)的價(jià)格分別是多少?

2)若第二次購(gòu)書(shū)按定價(jià)售出本時(shí),出現(xiàn)滯銷,于是決定打折出售剩下這批書(shū),那么該商家最低打幾折才能保證剩下書(shū)的利潤(rùn)率不低于

【答案】1)第一次購(gòu)書(shū)的進(jìn)價(jià)是50元,第二次購(gòu)書(shū)的進(jìn)價(jià)是60元;

2)該商家最低打五折才能保證剩下書(shū)的利潤(rùn)率不低于

【解析】

1)設(shè)第一次購(gòu)書(shū)的單價(jià)為x元,根據(jù)第一次用12000元購(gòu)書(shū)若干本,第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了20%,他用15000元所購(gòu)該書(shū)的數(shù)量比第一次多10本,列出方程,求出x的值即可得出答案;

2)設(shè)該商家打y折,依題意列出不等式,解不等式即可

1)設(shè)第一次購(gòu)書(shū)的單價(jià)為x元,則第二次購(gòu)書(shū)單價(jià)是 元,

根據(jù)題意得:+10

解得:x50,

經(jīng)檢驗(yàn),x50是原方程的解,

=60

答:第一次購(gòu)書(shū)的進(jìn)價(jià)是50元,第二次購(gòu)書(shū)的進(jìn)價(jià)是60元;

2)解:設(shè)該商家打y折,依題意得:

解得:

答:該商家最低打五折才能保證剩下書(shū)的利潤(rùn)率不低于

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位運(yùn)動(dòng)員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.

(2)該運(yùn)動(dòng)員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,

問(wèn):球出手時(shí),他距離地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)分別為(2,1),(6,1),BAC=90°,AB=AC,直線ABy軸于點(diǎn)P,若ABCABC關(guān)于點(diǎn)P成中心對(duì)稱,則點(diǎn)A的坐標(biāo)為( 。

A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購(gòu)買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過(guò)8780元購(gòu)進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.

①若設(shè)購(gòu)進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

②若所購(gòu)進(jìn)羽毛球均可全部售出,請(qǐng)求出網(wǎng)店所獲利潤(rùn)W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)m為何值時(shí)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為10cm,點(diǎn)E在邊AB上,且AE=4cm,

(1)如果點(diǎn)P在線段BC上以2cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)2秒后,BPE與CQP是否全等?請(qǐng)說(shuō)明理由.

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_(kāi)_______cm/s時(shí),在某一時(shí)刻也能夠使BPE與CQP全等.

(2)若點(diǎn)Q以中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD的四條邊運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫(xiě)出第一次相遇點(diǎn)在何處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有 A(-21), B(3, 1),C(2, 3)三點(diǎn),請(qǐng)回答下列問(wèn)題:

(1)在坐標(biāo)系內(nèi)描出點(diǎn)A B, C的位置.

(2)畫(huà)出關(guān)于直線x=-1對(duì)稱的,并寫(xiě)出各點(diǎn)坐標(biāo).

(3)y軸上是否存在點(diǎn)P,使以AB, P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x+3x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.

(1)求點(diǎn)A B的坐標(biāo);

(2)過(guò)點(diǎn)B作直線BPx軸相交于點(diǎn)P,且使OP=2OA,求的面積.

(3)直接寫(xiě)出y<0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過(guò)點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.

(1)求拋物線的解析式;

(2)點(diǎn)Dy軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);

(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx+3與坐標(biāo)軸交于A,B兩點(diǎn),在射線AO上有一點(diǎn)P,當(dāng)△APB是以AP為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案