【題目】如圖,菱形紙片的邊長(zhǎng)為翻折使點(diǎn)兩點(diǎn)重合在對(duì)角線上一點(diǎn)分別是折痕.設(shè)

1)證明:;

2)當(dāng)時(shí),六邊形周長(zhǎng)的值是否會(huì)發(fā)生改變,請(qǐng)說明理由;

3)當(dāng)時(shí),六邊形的面積可能等于?如果能,求此時(shí)的值;如果不能,請(qǐng)說明理由.

【答案】1)見解析;(2)不變,見解析;(3)能,

【解析】

1)由折疊的性質(zhì)得到BE=EPBF=PF,得到BE=BF,根據(jù)菱形的性質(zhì)得到ABCDFG,BCEHAD,于是得到結(jié)論;
2)由菱形的性質(zhì)得到BE=BF,AE=FC,推出△ABC是等邊三角形,求得∠B=D=60°,得到∠B=D=60°,于是得到結(jié)論;
3)記ACBD交于點(diǎn)O,得到∠ABD=30°,解直角三角形得到AO=1BO=,求得S四邊形ABCD=2,當(dāng)六邊形AEFCHG的面積等于時(shí),得到SBEF+SDGH=,設(shè)GHBD交于點(diǎn)M,求得GM=x,根據(jù)三角形的面積列方程即可得到結(jié)論.

:折疊后落在上,

平分

,

四邊形為菱形,同理四邊形為菱形,

四邊形為平行四邊形,

.

不變.

理由如下:

四邊形為菱形,

為等邊三角

為定值.

交于點(diǎn).

當(dāng)六邊形的面積為時(shí),

交于點(diǎn)

同理

化簡(jiǎn)得

解得,

∴當(dāng)時(shí),六邊形的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有兩個(gè)不透明的乒乓球盒,甲盒中裝有1個(gè)白球和2個(gè)紅球,乙盒中裝有2個(gè)白球和若干個(gè)紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機(jī)摸出一個(gè)球,摸到紅球的概率為

(1)求乙盒中紅球的個(gè)數(shù);

(2)若先從甲盒中隨機(jī)摸出一個(gè)球,再?gòu)囊液兄须S機(jī)摸出一個(gè)球,請(qǐng)用樹形圖或列表法求兩次摸到不同顏色的球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將ΔADP沿AP翻折得到,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過點(diǎn)B作BN‖MP交DC于點(diǎn)N.

圖1

圖2

(1)求證:;

(2)請(qǐng)判斷四邊形PMBN的形狀,并說明理由;

(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若tan∠PAD=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形中,為對(duì)角線上的一點(diǎn),連接

1)求證:

2)如圖2,延長(zhǎng)于點(diǎn),上一點(diǎn),連接于點(diǎn),且有

①判斷的位置關(guān)系,并說明理由;

②如圖3,取中點(diǎn),連接、,當(dāng)四邊形為平行四邊形時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為

)請(qǐng)直接寫出袋子中白球的個(gè)數(shù).

)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.

1)求yx之間的函數(shù)關(guān)系式;

2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,□ABCD,BE//DF,且分別交對(duì)角線AC于點(diǎn)E,F(xiàn),連接ED,BF .

求證:(1)ΔABEΔCDF;

(2)DEF=BFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點(diǎn)E,過AAF垂直BE于點(diǎn)F,過CCG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過HHP垂直AFABP.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點(diǎn)F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正確結(jié)論有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案