【題目】現(xiàn)有兩個(gè)不透明的乒乓球盒,甲盒中裝有1個(gè)白球和2個(gè)紅球,乙盒中裝有2個(gè)白球和若干個(gè)紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機(jī)摸出一個(gè)球,摸到紅球的概率為

(1)求乙盒中紅球的個(gè)數(shù);

(2)若先從甲盒中隨機(jī)摸出一個(gè)球,再?gòu)囊液兄须S機(jī)摸出一個(gè)球,請(qǐng)用樹形圖或列表法求兩次摸到不同顏色的球的概率.

【答案】(1)3(2)

【解析】解:(1)設(shè)乙盒中紅球的個(gè)數(shù)為x,

根據(jù)題意得,解得x=3。

經(jīng)檢驗(yàn),x=3是方程的根。

乙盒中紅球的個(gè)數(shù)為3。

(2)列表如下:

共有15種等可能的結(jié)果,兩次摸到不同顏色的球有7種,

兩次摸到不同顏色的球的概率=。

(1)設(shè)乙盒中紅球的個(gè)數(shù)為x,根據(jù)概率公式由從乙盒中隨機(jī)摸出一個(gè)球,摸到紅球的概率為可得到方程得,然后解方程即可。

(2)列表或畫樹狀圖展示所有15種等可能的結(jié)果數(shù),再找出兩次摸到不同顏色的球占7種,然后根據(jù)概率公式即可得到兩次摸到不同顏色的球的概率。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 在正方形ABCD中.

1)如圖1,點(diǎn)E、F分別在BCCD上,AEBF相交于點(diǎn)O,∠AOB=90°,試判斷AEBF的數(shù)量關(guān)系,并說明理由;

2)如圖2,點(diǎn)E、FG、H分別在邊BC、CD、DAAB上,EG、FH相交于點(diǎn)O,∠GOH=90°,且EG=7,求FH的長(zhǎng);

3)如圖3,點(diǎn)E、F分別在BCCD上,AEBF相交于點(diǎn)O,∠AOB=90°,若AB=5,圖中陰影部分的面積與正方形的面積之比為45,求△ABO的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分7分)已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍;

(2)是否存在實(shí)數(shù)k,使此方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為災(zāi)區(qū)開展了"獻(xiàn)出我們的愛"賑災(zāi)捐款活動(dòng),九年級(jí)(1)班50名同學(xué)積極參加了這次賑災(zāi)捐款活動(dòng),

捐款(元)

10

15

30

50

60

人數(shù)

3

6

11

13

6

因不慎,表中數(shù)據(jù)有兩處被墨水污染,已無法看清,但已知全班平均每人捐款38

1)根據(jù)以上信息請(qǐng)幫助小明計(jì)算出被污染處的數(shù)據(jù),并寫出解答過程.

2)該班捐款金額的眾數(shù),中位數(shù)分別是多少?

3)如果用九年級(jí)(1)班捐款情況作為一個(gè)樣本,請(qǐng)估計(jì)全校1200人中捐款在40元以上(包括40元)的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的對(duì)角線、相交于點(diǎn),對(duì)角線繞點(diǎn)逆時(shí)針旋轉(zhuǎn),分別交邊于點(diǎn)、

1)求證:

2)若,,.當(dāng)繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)時(shí),判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(1,y1)(2,y2).

①若 y1>0 時(shí),則 a+b+c>0

②若 a=b 時(shí),則 y1<y2

③若 y1<0,y2>0,且 a+b<0,則 a>0

④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點(diǎn)一定在第三象限上述四個(gè)判斷正確的有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC 中,ABAC,∠BAC=120°,點(diǎn) P 為平面內(nèi)一點(diǎn).

(1)如圖 1,當(dāng)點(diǎn) P 在邊 BC 上時(shí),且滿足∠APC=120°,求的值;

(2)如圖 2,當(dāng)點(diǎn) P 在△ABC 的外部,且滿足∠APC+∠BPC=90°,求證:BPAP;

(3)如圖 3,點(diǎn) P 滿足∠APC=60°,連接 BP,若 AP=1,PC=3,直接寫出BP 的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一位旅行者騎自行車沿湖邊正東方向筆直的公路BC行駛,在B地測(cè)得湖中小島上某建筑物A在北偏東45°方向,行駛12min后到達(dá)C地,測(cè)得建筑物A在北偏西60°方向如果此旅行者的速度為10km/h,求建筑物A到公路BC的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形紙片的邊長(zhǎng)為翻折使點(diǎn)兩點(diǎn)重合在對(duì)角線上一點(diǎn)分別是折痕.設(shè)

1)證明:;

2)當(dāng)時(shí),六邊形周長(zhǎng)的值是否會(huì)發(fā)生改變,請(qǐng)說明理由;

3)當(dāng)時(shí),六邊形的面積可能等于?如果能,求此時(shí)的值;如果不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案