【題目】如圖,將平行四邊形ABCD沿EF對(duì)折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°,AD=6,AB=12,則AE的長(zhǎng)為_______.

【答案】8.4.

【解析】

過(guò)點(diǎn)CCGAB的延長(zhǎng)線(xiàn)于點(diǎn)G,設(shè)AE=x,由于ABCD沿EF對(duì)折可得出AE=CE=x, 再求出∠BCG=30°BG=BC=3, 由勾股定理得到,則EG=EB+BG=12-x+3=15-x,在CEG中,利用勾股定理列出方程即可求出x的值.

解:過(guò)點(diǎn)CCGAB的延長(zhǎng)線(xiàn)于點(diǎn)G,


ABCD沿EF對(duì)折,

AE=CE

設(shè)AE=x,則CE=x,EB=12-x

AD=6,∠A=60°,

BC=6, CBG=60°,

∴∠BCG=30°

BG=BC=3,

BCG中,由勾股定理可得:

EG=EB+BG=12-x+3=15-x

CEG中,由勾股定理可得:

解得:

故答案為:8.4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在城正西方向處,以每小時(shí)的速度向南偏東方向移動(dòng),距臺(tái)風(fēng)中心的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.

1)求城與臺(tái)風(fēng)中心之間的最小距離;(2)求城受臺(tái)風(fēng)影響的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)如圖所示,在四邊形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公交快速通道開(kāi)通后,為響應(yīng)市政府綠色出行的號(hào)召,家住新城的小王上班由自駕車(chē)改為乘坐公交車(chē).已知小王家距上班地點(diǎn)18千米,他用乘公交車(chē)的方式平均每小時(shí)行駛的路程比他用自駕車(chē)的方式平均每小時(shí)行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車(chē)方式所用時(shí)間是自駕車(chē)方式所用時(shí)間的.小王用自駕車(chē)方式上班平均每小時(shí)行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P、Q 是反比例函數(shù)x>0)圖象上的兩點(diǎn),過(guò)點(diǎn) PQ 分別作直線(xiàn)且與 x、y 軸分別交于點(diǎn) AB和點(diǎn) M、N.已知點(diǎn) P 為線(xiàn)段 AB 的中點(diǎn).

(1)求△AOB 的面積(結(jié)果用含 a 的代數(shù)式表示);

(2)當(dāng)點(diǎn) Q 為線(xiàn)段 MN 的中點(diǎn)時(shí),小菲同學(xué)連結(jié) AN,MB 后發(fā)現(xiàn)此時(shí)直線(xiàn) AN 與直線(xiàn)MB 平行,問(wèn)小菲同學(xué)發(fā)現(xiàn)的結(jié)論正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABD中,AB=AD,將ABD沿BD對(duì)折,使點(diǎn)A翻折到點(diǎn)C,EBD上一點(diǎn)。且BE>DE,連接AE并延長(zhǎng)交CDF,連接CE.

(1)依題意補(bǔ)全圖形;

(2)判斷∠AFD與∠BCE的大小關(guān)系并加以證明;

(3)若∠BAD=120°,過(guò)點(diǎn)A作∠FAG=60°交邊BC于點(diǎn)G,若BG=m,DF=n,求AB的長(zhǎng)度(用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷(xiāo)售旺季.某商場(chǎng)銷(xiāo)售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

進(jìn)價(jià)(元/部)

4000

2500

售價(jià)(元/部)

4300

3000

該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷(xiāo)售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷(xiāo)售量)

1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?

2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷(xiāo)售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A地在數(shù)軸上表示的數(shù)為-16,AB兩地相距50個(gè)單位長(zhǎng)度.小明從A地出發(fā)去B地,以每分鐘2個(gè)單位長(zhǎng)度的速度行進(jìn),第一次他向左1單位長(zhǎng)度,第二次向右2單位長(zhǎng)度,第三次再向左3單位長(zhǎng)度,第四次又向右4單位長(zhǎng)度,按此規(guī)律行進(jìn).

1)求出B地在數(shù)軸上表示的數(shù);

2)若B地在原點(diǎn)的右側(cè),經(jīng)過(guò)第8次行進(jìn)后小明到達(dá)點(diǎn)P,此時(shí)點(diǎn)P與點(diǎn)B相距幾個(gè)單位長(zhǎng)度?8次運(yùn)動(dòng)完成后一共經(jīng)過(guò)了幾分鐘?

3)若經(jīng)過(guò)n次(n為正整數(shù))行進(jìn)后,小明到達(dá)點(diǎn)Q,請(qǐng)你直接寫(xiě)出:點(diǎn)Q在數(shù)軸上表示的數(shù)應(yīng)如何表示?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)ABCD相交于O,OE是∠AOC的平分線(xiàn),OFCD,OGOE,∠BOD=52°

1)求∠AOC,∠AOF的度數(shù);

2)求∠EOF與∠BOG是否相等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案