【題目】為了適合不同人群的需求,某公司對每日堅果混合裝進行改革.甲種每袋裝有10克核桃仁,10克巴旦木仁,10克黑加侖;乙種每袋裝有20克核桃仁,5克巴旦木仁,5克黑加侖.甲乙兩種袋裝干果每袋成本價分別為袋中核桃仁、巴旦木仁、黑加侖的成本價之和.已知核桃仁每克成本價0.04元,甲每袋堅果的售價為5.2元,利潤率為,乙種堅果每袋利潤率為,若這兩種袋裝的銷售利潤率達到,則該公司銷售甲、乙兩種袋裝堅果的數(shù)最之比是____

【答案】1330

【解析】

根據(jù)題意,先求出1克巴旦木和1克黑加侖的成本之和,然后求出乙種干果的成本,再設(shè)甲種干果x袋,乙種干果y袋,通過利潤的關(guān)系,列出方程解方程即可求出甲、乙兩種干果數(shù)量之比.

解:設(shè)1克巴旦木成本價m元,和1克黑加侖成本價n元,根據(jù)題意得

10(0.04+m+n) ×(1+30%)=5.2
解得:m+n=0.36
甲種干果的成本價:10×(0.04+0.36)=4

乙種干果的成本價:20×0.04+5×0.36=2.6

乙種干果的售價為:2.6×(1+20 %)=3.12

設(shè)甲種干果有x袋,乙種干果有y袋,則

(4x+2.6y)(1+24 %)=5.2x+3.12y

解得:

故答案為:該公司銷售甲、乙兩種袋裝堅果的數(shù)最之比是1330

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解方程:

1)直接開平方法: 4(t-3)2=9(2t-3)2

2)配方法:2x2-7x-4=0

3)公式法: 3x2+5(2x+1)=0

4)因式分解法:3(x-5)2=2(5-x)

5abx2-(a2+b2)x+ab=0 (ab≠0)

6)用配方法求最值:6x2-x-12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生的體能情況,體育老師從中隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:

(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;

(2)請將條形圖補充完整;

(3)若規(guī)定引體向上6次以上(含6次)為體能達標,則該校125名九年級男生中估計有多少人體能達標?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知∠BAC=36°,△A1B1A2,△A2B2A3△A3B3A4,△AnBnAn+1都是頂角為36°的等腰三角形,即∠A1B1A2=∠A2B2A3=∠A3B3A4=…=∠AnBnAn+1=36°,點A1,A2,A3,An在射線AC上,點B1,B2,B3,Bn在射線AB上,若A1A2=1,則線段A2018A2019的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2-x+cx軸于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),點A的坐標為(-30),點B的坐標為(1,0),交y軸于點C

1)求該拋物線的解析式;

2)已知點P為拋物線上一點,直線PCx軸交于點Q,使得PQ=CQ,求P點坐標;

3)若點M是拋物線對稱軸上一點,點N是平面內(nèi)一點,是否存在以A,C,M,N為頂點的矩形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,于點,點上任意一點,連接,點的中點,點上一點,且,連接、

1)若,,求的長;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應(yīng)求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進貨單價多少元?

(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標;

(3當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案