【題目】在等邊中,于點,點為上任意一點,連接,點為的中點,點為上一點,且,連接、、.
(1)若,,求的長;
(2)求證:.
【答案】(1)(2)證明見詳解
【解析】
(1)根據(jù)等邊三角形性質可知BD=BC=,利用勾股定理求出AD的長,再利用勾股定理求出BF的值;
(2)先延長EG至H,使GH=EG,連接BH、CH、FH,構造全等三角形,證四邊形BHFE是平行四邊形,推出BH∥EF,再由AE=EF,推出AC∥EF,得出AC∥BH,根據(jù)平行線的性質推出∠ACB=∠CBH=60°,根據(jù)三角形全等的判定和性質得出△CEH是等邊三角形,再根據(jù)等邊三角形性質求得結論即可.
(1)解:∵在等邊中,于點,
∴AC=BC=AB=,BD=BC=
∴AD=
∵
∴DF=15-6=9
∴BF=
(2)證明:延長EG至H,使GH=EG,連接BH、CH、FH,
∵點為的中點,∴BG=FG
∴四邊形BHFE是平行四邊形,
∴BH=EF,BH∥EF
∵AE=EF ∴BH=AE,∠EAF=∠EFA=∠DAC
∴AC∥EF ∴AC∥BH
∴∠ACB=∠CBH=60°
在△AEC和△BHC中
∴△AEC≌△BHC(SAS)
∴∠ACE=∠BCH EC=HC
∴∠ECB+∠ACE=∠ECB+∠BCH=60°即∠ECH=60°
∴△CEH是等邊三角形,GH=EG,
∴∠CGE=90°,∠ECG=30°
∴tan30°=EG∶CG=1∶
∴CG=EG
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OA1B1,△A1A2B2,△A2A3B3,…是分別以A1,A2,A3,…為直角頂點,一條直角邊在x軸正半軸上的等腰直角三角形,其斜邊的中點C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函數(shù)y(x>0)的圖象上.則y1+y2+…+y20的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=mx2﹣4mx+2m+1與x軸交于A(x1,0),B(x2,0)兩點,與y軸交于點C,且x2﹣x1=2.
(1)求拋物線的解析式;
(2)E是拋物線上一點,∠EAB=2∠OCA,求點E的坐標;
(3)設拋物線的頂點為D,動點P從點B出發(fā),沿拋物線向上運動,連接PD,過點P做PQ⊥PD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當點P運動至點(5,t)時,求線段DM掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某保健品廠每天生產A,B兩種品牌的保健品共600瓶,A,B兩種產品每瓶的成本和售價如下表,設每天生產A產品x瓶,生產這兩種產品每天共獲利y元.
A | B | |
成本(元)/瓶 | 50 | 35 |
售價(元)/瓶 | 70 | 50 |
(1)請求出y關于x的函數(shù)關系;
(2)該廠每天生產的A,B兩種產品被某經銷商全部訂購,廠家對B產品不變,對A產品進行讓利,每瓶利潤降低元,廠家如何生產可使每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了適合不同人群的需求,某公司對每日堅果混合裝進行改革.甲種每袋裝有10克核桃仁,10克巴旦木仁,10克黑加侖;乙種每袋裝有20克核桃仁,5克巴旦木仁,5克黑加侖.甲乙兩種袋裝干果每袋成本價分別為袋中核桃仁、巴旦木仁、黑加侖的成本價之和.已知核桃仁每克成本價0.04元,甲每袋堅果的售價為5.2元,利潤率為,乙種堅果每袋利潤率為,若這兩種袋裝的銷售利潤率達到,則該公司銷售甲、乙兩種袋裝堅果的數(shù)最之比是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在11×11的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關于直線l對稱的△A1B1C1;(要求A與A1,B與B1,C與C1相對應)
(2)作出△ABC繞點C順時針方向旋轉90°后得到的△A2B2C2;
(3)在(2)的條件下求出線段AC在旋轉中所掃過的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,交y軸正半軸于C點,D為拋物線的頂點,A(-1,0),B(3,0).
(1)求出二次函數(shù)的表達式.
(2)點P在x軸上,且∠PCB=∠CBD,求點P的坐標.
(3)在x軸上方拋物線上是否存在一點Q,使得以Q,C,B,O為頂點的四邊形被對角線分成面積相等的兩部分?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點E,使DE=AD,連接BD.
(1)求證:四邊形BCED是平行四邊形;
(2)若DA=DB=2,cosA=,求點B到點E的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結構圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點.已知的弓形高,,.當鎖柄繞著點順時針旋轉至位置時,門鎖打開,此時直線與所在的圓相切,且,.
(1)求所在圓的半徑;
(2)求線段的長度.(,結果精確到)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com