【題目】如圖,在平面直角坐標系中,△PQR是△ABC經(jīng)過某種變換后得到的圖形,其中點A與點P,點B與點Q,點C與點R是對應(yīng)的點,在這種變換下:

(1)直接寫出下列各點的坐標

A(____,_____)P(__________);B(_____,_____)Q(______,_____)C(_____,______)R(____________)

②它們之間的關(guān)系是:______(用文字語言直接寫出)

(2)在這個坐標系中,三角形ABC內(nèi)有一點M,點M經(jīng)過這種變換后得到點N,點N在三角形PQR內(nèi),其中M、N的坐標M(,6(a+b)10),N(1,4(b2a)6),求關(guān)于x的不等式b1的解集.

【答案】(1)①43,﹣4,﹣3,31,﹣3,﹣1,1,2,﹣1,﹣2;②兩個三角形各頂點橫、縱坐標互為相反數(shù);(2)x<﹣1

【解析】

1)根據(jù)點的位置寫出坐標,再根據(jù)坐標的特征寫出規(guī)律即可;

2)利用(1)中規(guī)律,構(gòu)建方程組,求出a、b的值,解不等式即可;

解:(1)由圖可得,①A(4,3)P(4,﹣3); B(31)Q(3,﹣1) C(1,2)R(1,﹣2)

②由①可得:兩個三角形各頂點橫、縱坐標互為相反數(shù).

故答案為:4,3,﹣4,﹣33,1,﹣3,﹣11,2,﹣1,﹣2;

(2)M、N關(guān)于原點對稱,

M、N兩點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),

+106(a+b)10+4(b2a)60,

解得a2,b2,

21

6x+47x+38

x<﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象分別與x軸,y軸相交于點A,B,與反比例函數(shù)y2= 的圖象相交于點C(﹣4,﹣2),D(2,4).

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)當(dāng)x為何值時,y1>0;

(3)當(dāng)x為何值時,y1<y2,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中每個小正方形邊長都是1.

(1)畫出ABC關(guān)于直線1對稱的圖形A1BlCl;

(2)在直線l上找一點P,使PB=PC;(要求在直線1上標出點P的位置)

(3)連接PA、PC,計算四邊形PABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生課余生活,某區(qū)教育部門準備在七年級開設(shè)興趣課堂.為了了解學(xué)生對音樂、書法、球類、繪畫這四個興趣小組的喜愛情況,在全區(qū)進行隨機抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖(信息不完整),請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了多少名同學(xué)?

(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中音樂部分的圓心角的度數(shù)

(3)如果該區(qū)七年級共有2000名學(xué)生參加這4個課外興趣小組,而每名教師最多只能輔導(dǎo)本組的20名學(xué)生,則繪畫興趣小組至少需要準備多少名教師?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+4(k≠0)與y軸交于點A.直線y=﹣2x+1與直線y=kx+4(k≠0)交于點B,與y軸交于點C,點B的橫坐標為﹣1.

(1)求點B的坐標及k的值;

(2)直線y=﹣2x+1與直線y=kx+4y軸所圍成的△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ADBC于點DCEAB于點E.

(1)猜測∠1與∠2的關(guān)系,并說明理由;

(2)如果∠ABC是鈍角,如圖2,(1)中的結(jié)論是否還成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠B30°,AD是∠BAC的角平分線,DEAB,垂足為點E,DE1,BE,則ABC的周長是( )

A.6+B.3+2C.6+2D.3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點D.E分別在邊BC,AB上,且BD=AE,ADCE交于點F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一角的兩邊與另一個角的兩邊平行,分別結(jié)合下圖,試探索這兩個角之間的關(guān)系,并證明你的結(jié)論.

1)如圖(1ABEF,BCDE,∠1與∠2的關(guān)系是:____________ .

2)如圖(2ABEF,BCDE, 1與∠2的關(guān)系是:____________

3)經(jīng)過上述證明,我們可以得到一個真命題:如果____ _____,那么____________.

4)若兩個角的兩邊互相平行,且一個角比另一個角的2倍少30°,則這兩個角分別是多少度?

查看答案和解析>>

同步練習(xí)冊答案