【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象分別與x軸,y軸相交于點(diǎn)A,B,與反比例函數(shù)y2= 的圖象相交于點(diǎn)C(﹣4,﹣2),D(2,4).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)當(dāng)x為何值時(shí),y1>0;
(3)當(dāng)x為何值時(shí),y1<y2,請(qǐng)直接寫(xiě)出x的取值范圍.
【答案】(1)y1=x+2; ;(2)當(dāng)x>﹣2時(shí),y1>0;(3)x<﹣4或0<x<2.
【解析】
(1)將C、D兩點(diǎn)代入一次函數(shù)的解析式中即可求出一次函數(shù)的解析式,然后將點(diǎn)D代入反比例函數(shù)的解析式即可求出反比例函數(shù)的解析式;
(2)根據(jù)一元一次不等式的解法即可求出答案.
(3)根據(jù)圖象即可求出答案該不等式的解集.
(1)∵一次函數(shù)y1=k1x+b的圖象經(jīng)過(guò)點(diǎn)C(-4,-2),D(2,4),
∴,
解得.
∴一次函數(shù)的表達(dá)式為y1=x+2.
∵反比例函數(shù)y2=的圖象經(jīng)過(guò)點(diǎn)D(2,4),
∴4=.
∴k2=8.
∴反比例函數(shù)的表達(dá)式為y2=
(2)由y1>0,得x+2>0.
∴x>-2.
∴當(dāng)x>-2時(shí),y1>0.
(3)x<-4或0<x<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=4,C為線段AB上的一個(gè)動(dòng)點(diǎn),以AC、BC為邊作等邊△ACD和等邊△BCE,⊙O外接于△CDE,則⊙O半徑的最小值為( 。
A. 4 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為10,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC.
(1)求證:△ABD≌△ECB;
(2)若∠EDC=65°,求∠ECB的度數(shù);
(3)若AD=3,AB=4,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn),已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An,….若點(diǎn)A1的坐標(biāo)為(3,1),則點(diǎn)A2018的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設(shè)13對(duì)直線型斜拉索,造型新穎,是“三晉大地”的一種象征.某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測(cè)量斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測(cè)量.測(cè)量結(jié)果如下表.
項(xiàng)目 | 內(nèi)容 | ||
課題 | 測(cè)量斜拉索頂端到橋面的距離 | ||
測(cè)量示意圖 | 說(shuō)明:兩側(cè)最長(zhǎng)斜拉索AC,BC相交于點(diǎn)C,分別與橋面交于A,B兩點(diǎn),且點(diǎn)A,B,C在同一豎直平面內(nèi). | ||
測(cè)量數(shù)據(jù) | ∠A的度數(shù) | ∠B的度數(shù) | AB的長(zhǎng)度 |
38° | 28° | 234米 | |
… | … |
(1)請(qǐng)幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求斜拉索頂端點(diǎn)C到AB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
(2)該小組要寫(xiě)出一份完整的課題活動(dòng)報(bào)告,除上表的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目(寫(xiě)出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線y=與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,過(guò)點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,PM交BC于點(diǎn)Q,過(guò)點(diǎn)P作PE∥AC交x軸于點(diǎn)E,交BC于點(diǎn)F.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)試探究在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)請(qǐng)用含m的代數(shù)式表示線段QF的長(zhǎng),并求出m為何值時(shí)QF有最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市正在開(kāi)展“食品安全城市”創(chuàng)建活動(dòng),為了解學(xué)生對(duì)食品安全知識(shí)的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類(lèi)分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了 名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為 ;
(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校共有800名學(xué)生,請(qǐng)你估計(jì)對(duì)食品安全知識(shí)“非常了解”的學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△PQR是△ABC經(jīng)過(guò)某種變換后得到的圖形,其中點(diǎn)A與點(diǎn)P,點(diǎn)B與點(diǎn)Q,點(diǎn)C與點(diǎn)R是對(duì)應(yīng)的點(diǎn),在這種變換下:
(1)直接寫(xiě)出下列各點(diǎn)的坐標(biāo)
①A(____,_____)與P(_____,_____);B(_____,_____)與Q(______,_____);C(_____,______)與R(______,______)
②它們之間的關(guān)系是:______(用文字語(yǔ)言直接寫(xiě)出)
(2)在這個(gè)坐標(biāo)系中,三角形ABC內(nèi)有一點(diǎn)M,點(diǎn)M經(jīng)過(guò)這種變換后得到點(diǎn)N,點(diǎn)N在三角形PQR內(nèi),其中M、N的坐標(biāo)M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求關(guān)于x的不等式﹣>b﹣1的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com