【題目】如圖, 直線軸交于點(diǎn),與雙曲線 在第三象限交于兩點(diǎn),且 ;下列等邊三角形,……的邊,,,……軸上,頂點(diǎn)……在該雙曲線第一象限的分支上,則= ____,前25個(gè)等邊三角形的周長之和為 _______

【答案】 60

【解析】

設(shè),設(shè)直線與軸的交點(diǎn)為H,先求解的坐標(biāo),得到∠HAO=30°,用含的代數(shù)式表示,聯(lián)立函數(shù)解析式利用根與系數(shù)的關(guān)系得到關(guān)于的方程,從而可得第一空的答案;過分別向軸作垂線,垂足分別為先根據(jù)等邊三角形的性質(zhì)與反比例函數(shù)的性質(zhì)求解的邊長,依次同法可得后面等邊三角形的邊長,發(fā)現(xiàn)規(guī)律,再前25個(gè)等邊三角形的周長之和即可.

解:設(shè),設(shè)直線與軸的交點(diǎn)為H,

H),又A0b),

tanHAO=,∴∠HAO=30°

軸于 軸于,

AB=2BMAC=2CN,∵BM=,,

AB=AC=,

聯(lián)立

得到

,由已知可得,

,

∴反比例函數(shù)的解析式為,

分別向軸作垂線,垂足分別為

設(shè)

由等邊三角形的性質(zhì)得:

得:

(舍去)

經(jīng)檢驗(yàn):符合題意,

可得的邊長為4,

同理設(shè) ,

解得: (舍去)

經(jīng)檢驗(yàn):符合題意,

的邊長為

同理可得:的邊長為,

的邊長為

∴前25個(gè)等邊三角形的周長之和為

=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(10),B(4,0),交y軸于點(diǎn)C;

1)求拋物線的解析式(用一般式表示);

2)點(diǎn)Dy軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使SABC=SABD?若存在,請求出點(diǎn)D坐標(biāo);若不存在,請說明理由;

3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),直線交二次函數(shù)的圖像于點(diǎn),,點(diǎn)在該二次函數(shù)的圖像上,設(shè)過點(diǎn)(其中)且平行于軸的直線交直線于點(diǎn),交直線于點(diǎn),以線段為鄰邊作矩形

1)若點(diǎn)的橫坐標(biāo)為8

①用含的代數(shù)式表示的坐標(biāo);

②點(diǎn)能否落在該二次函數(shù)的圖像上?若能,求出的值;若不能,請說明理由;

2)當(dāng)時(shí),若點(diǎn)恰好落在該二次函數(shù)的圖像上,請直接寫出此時(shí)滿足條件的所有直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,點(diǎn)為矩形對角線上一點(diǎn),過點(diǎn),分別交于點(diǎn)、.若,的面積為,的面積為,則________;

2)如圖2,點(diǎn)內(nèi)一點(diǎn)(點(diǎn)不在上),點(diǎn)、、分別為各邊的中點(diǎn).設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);

3)如圖3,點(diǎn)內(nèi)一點(diǎn)(點(diǎn)不在上)過點(diǎn),,與各邊分別相交于點(diǎn)、、、.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);

4)如圖4,點(diǎn)、、四等分.請你在圓內(nèi)選一點(diǎn)(點(diǎn)不在上),設(shè)、、圍成的封閉圖形的面積為、圍成的封閉圖形的面積為,的面積為,的面積為.根據(jù)你選的點(diǎn)的位置,直接寫出一個(gè)含有、、、的等式(寫出一種情況即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,雙曲線與直線相交于點(diǎn)B,過B點(diǎn)作軸于點(diǎn)C,連接AC,已知

1)求的值;

2)延長AC交雙曲線于另一點(diǎn)D,求D的的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸相交于,交軸于點(diǎn),點(diǎn)拋物線的頂點(diǎn),對稱軸與軸交于點(diǎn)

.求拋物線的解析式;

.如圖1,連接,點(diǎn)是線段上方拋物線上的一動點(diǎn),于點(diǎn);過點(diǎn)軸于點(diǎn),于點(diǎn).點(diǎn)軸上一動點(diǎn),當(dāng) 取最大值時(shí)

.的最小值;

.如圖2,點(diǎn)是軸上一動點(diǎn),請直接寫出的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1(常數(shù)t>0)與軸的負(fù)半軸交于點(diǎn)G,頂點(diǎn)為Q,過QQM軸交軸于點(diǎn)M,交雙曲線L2于點(diǎn)P,且OG·MP=4

1)求值;

2)當(dāng)t=2時(shí),求PQ的長;

3)當(dāng)PQM的中點(diǎn)時(shí),求t的值;

4)拋物線L1與拋物線L2所圍成的區(qū)域(不含標(biāo)界)內(nèi)整點(diǎn)(點(diǎn)的橫、縱坐標(biāo)都是整數(shù))的個(gè)數(shù)有且只有1個(gè),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字1、2,它們除了數(shù)字不同外,其它都完全相同.

1)隨機(jī)地從布袋中摸出一個(gè)小球,求摸出的球?yàn)闃?biāo)有數(shù)字1的小球的概率.

2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請用樹狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在整數(shù)的除法運(yùn)算中,只有能整除與不能整除兩種情況,當(dāng)不能整除時(shí),就會產(chǎn)生余數(shù),現(xiàn)在我們利用整數(shù)的除法運(yùn)算來研究一種數(shù)——“差一數(shù)

定義:對于一個(gè)自然數(shù),如果這個(gè)數(shù)除以5余數(shù)為4,且除以3余數(shù)為2,則稱這個(gè)數(shù)為差一數(shù)

例如:,,所以14差一數(shù);

,但,所以19不是差一數(shù)

1)判斷4974是否為差一數(shù)?請說明理由;

2)求大于300且小于400的所有差一數(shù)

查看答案和解析>>

同步練習(xí)冊答案