【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交⊙OEDBE延長線上一點,且∠DAE=∠FAE

1)求證:AD為⊙O切線;

2)若sinBAC,求tanAFO的值.

【答案】(1)見解析;(2)3

【解析】

1)先利用角平分線定義、圓周角定理證明∠4=∠2,再利用AB為直徑得到∠2+BAE90°,則∠4+BAE90°,然后根據(jù)切線的判定方法得到AD為⊙O切線;

2)先利用圓周角定理得到∠ACB90°,則sinBAC,設(shè)BC3k,AC4k,所以AB5k.連接OEOE于點G,如圖,利用垂徑定理得OEAC,所以OEBC,AGCG2k,則OGk,EGk,再證明EFG∽△BFC,利用相似比得到,于是可計算出FGCGk,然后根據(jù)正切的定義求解.

1)證明:∵BE平分∠ABC,

∴∠1=∠2,

∵∠1=∠3,∠3=∠4,

∴∠4=∠2

AB為直徑,

∴∠AEB90°,

∵∠2+BAE90°

∴∠4+BAE90°,即∠BAD90°

ADAB

AD為⊙O切線;

2)解:∵AB為直徑,

∴∠ACB90°,

RtABC中,∵sinBAC,

∴設(shè)BC3kAC4k,則AB5k

連接OEOE于點G,如圖,

∵∠1=∠2,

,

OEAC,

OEBC,AGCG2k,

OGBCk

EGOEOGk,

EGCB,

∴△EFG∽△BFC

,

FGCGk

RtOGF中,tanGFO,

tanAFO3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O在對角AC上,以OA長為半徑的⊙O與AD、AC分別交于點EF,且.

1)求證:CE是⊙O的切線.

2)若tanACB=AE=8,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,以邊BC為直徑的半圓與邊AB,AC分別交于DF兩點,過點DDE⊥AC,垂足為點E

1)判斷DE⊙O的位置關(guān)系,并證明你的結(jié)論;

2)過點FFH⊥BC,垂足為點H,若AB=4,求FH的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx分別與雙曲線ym0,x0),雙曲線yn0,x0)交于點A和點B,且,將直線yx向左平移6個單位長度后,與雙曲線y 交于點C,若SABC4,則的值為_____mn的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點.過點軸于點,,,連接,已知的面積等于6.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若點是點關(guān)于軸的對稱點,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=ACBC=20,DEABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DNME相交于點O.若OMN是直角三角形,則DO的長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳生活,綠色出行是我們倡導的一種生活方式,某校為了解學生對共享單車的使用情況,隨機抽取部分學生進行問卷調(diào)查,并將這次調(diào)查的結(jié)果繪制了以下兩幅不完整的統(tǒng)計圖.

根據(jù)所給信息,解答下列問題:

1m   ;

2)補全條形統(tǒng)計圖;

3)這次調(diào)查結(jié)果的眾數(shù)是   ;

4)已知全校共3000名學生,請估計經(jīng)常使用共享單車的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

同步練習冊答案