【題目】如圖,直線yx分別與雙曲線ym0,x0),雙曲線yn0,x0)交于點A和點B,且,將直線yx向左平移6個單位長度后,與雙曲線y 交于點C,若SABC4,則的值為_____,mn的值為_____

【答案】 100

【解析】

先求出直線yx向左平移6個單位長度后的解析式為yx+4,那么直線yx+4y軸于E0,4),作EFOBF.根據(jù)互相垂直的兩直線斜率之積為﹣1得出直線EF的解析式為y=﹣x+4,再求出F點的坐標,根據(jù)勾股定理求得EF,根據(jù)SABC4,求出AB,那么根據(jù),求得OA,進而求出A、B兩點坐標,求出mn即可解決問題.

解:直線yx向左平移6個單位長度后的解析式為yx+6),即yx+4

∴直線yx+4y軸于E0,4),作EFOBF

可得直線EF的解析式為y=﹣x+4,

,解得 ,即

EF,

SABC4,

ABEF4,

AB

,

OAAB,

A32),B5,),

m6,n

mn100

故答案是:,100

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為12(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86tan31°≈0.60).

1)求小明從點A走到點D的過程中,他上升的高度;

2)大樹BC的高度約為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教育局為了了解初二學生第一學期參加社會實踐活動的天數(shù),隨機抽查本市部分初二學生第一學期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)

請你根據(jù)圖中提供的信息,回答下列問題:

1a=

2)補全條形統(tǒng)計圖;

3)求實踐天數(shù)為5天對應扇形的圓心角度數(shù);

4)如果該市有初二學生20000人,請你估計活動時間不少于5的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過點P(2,)作x軸的平行線交y軸于點A,交雙曲線于點N,作PM⊥AN交雙曲線于點M,連接AM,若PN=4.

(1)求k的值;

(2)設直線MN解析式為y=ax+b,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由我國完全自主設計、自主建造的首艘國產(chǎn)航母于20185月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.

(參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交⊙OE,DBE延長線上一點,且∠DAE=∠FAE

1)求證:AD為⊙O切線;

2)若sinBAC,求tanAFO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系內(nèi),設A0,0),B4,0),Ct+4,4),Dt,4)(t為實數(shù)),記N為平行四邊形ABCD內(nèi)部(不含邊界)的整點的個數(shù),其中整點是指橫、縱坐標都是整數(shù)的點,則N的值可能為_____

查看答案和解析>>

同步練習冊答案