【題目】數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如:如圖①,若點(diǎn)在數(shù)軸上分別對(duì)應(yīng)的數(shù)為,則的長(zhǎng)度可以表示為

請(qǐng)你用以上知識(shí)解決問題:

如圖②,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動(dòng)個(gè)單位長(zhǎng)度到達(dá)點(diǎn),再向右移動(dòng)個(gè)單位長(zhǎng)度到達(dá)點(diǎn),然后向右移動(dòng)個(gè)單位長(zhǎng)度到達(dá)點(diǎn).

請(qǐng)你在圖②的數(shù)軸上表示出三點(diǎn)的位置.

若點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度向左移動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒個(gè)單位長(zhǎng)度和個(gè)單位長(zhǎng)度的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為秒.

①當(dāng)時(shí),求的長(zhǎng)度;

②試探究:在移動(dòng)過程中,的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

【答案】1)見解析(2)①AB=9,AC=16;②的值不變,定值為12

【解析】

1)根據(jù)題意作圖可得;
2)①先表示出t=2時(shí)三點(diǎn)所表示的數(shù),再根據(jù)兩點(diǎn)間的距離公式可得答案;
②由移動(dòng)時(shí)間為t秒知A點(diǎn)表示的數(shù)為-t-2,B點(diǎn)表示的數(shù)為2t+1,C點(diǎn)表示的數(shù)為3t+6,據(jù)此得出ACAB的長(zhǎng),再代入3AC-4AB化簡(jiǎn)可得.

解:(1三點(diǎn)的位置如圖所示:

2)①當(dāng)時(shí),點(diǎn)表示的數(shù)為點(diǎn)表示的數(shù)為點(diǎn)表示的數(shù)為,

的值不變.

當(dāng)移動(dòng)時(shí)間為秒時(shí),點(diǎn)表示的數(shù)為點(diǎn)表示的數(shù)為點(diǎn)表示的數(shù)為,

,

的值為定值

在移動(dòng)過程中,的值不變.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)的乙種玩具的件數(shù)相同.

(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

(2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,購(gòu)進(jìn)這兩種玩具的總資金超過960元但不超過1000元,求商場(chǎng)有哪幾種具體的進(jìn)貨方案?最多可以購(gòu)進(jìn)乙種玩具多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩角及其中一角的平分線對(duì)應(yīng)相等的兩個(gè)三角形全等_____命題.(填

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程ax2+bx+c=0a0.

1)已知ac異號(hào),試說(shuō)明此方程根的情況.

2)若該方程的根是x1=-1x2=3,試求方程ax+22+bx+2b+c=0的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,BCABEAD上一點(diǎn),△ABE沿BE折疊,點(diǎn)A恰好落在線段CE上的點(diǎn)F處.

1)求證:CFDE;

2)設(shè)m

m,試求∠ABE的度數(shù);

設(shè)k,試求mk滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別交ABBC于點(diǎn)D、E,連結(jié)DE.若四邊形ODBE的面積為9,則ODE的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一副直角三角板滿足AB=BC,AC=DE,ABC=DEF=90°,EDF=30°

操作:將三角板DEF的直角頂點(diǎn)E放置于三角板ABC的斜邊AC上,再將三角板DEF繞點(diǎn)E旋轉(zhuǎn),并使邊DE與邊AB交于點(diǎn)P,邊EF與邊BC于點(diǎn)Q.

探究一:在旋轉(zhuǎn)過程中,

(1)如圖2,當(dāng)時(shí),EPEQ滿足怎樣的數(shù)量關(guān)系?并給出證明;

(2)如圖3,當(dāng)時(shí),EPEQ滿足怎樣的數(shù)量關(guān)系?并說(shuō)明理由;

(3)根據(jù)你對(duì)(1)、(2)的探究結(jié)果,試寫出當(dāng)時(shí),EPEQ滿足的數(shù)量關(guān)系式為   ,其中m的取值范圍是   .(直接寫出結(jié)論,不必證明)

探究二:若AC=30cm,連接PQ,設(shè)EPQ的面積為S(cm2),在旋轉(zhuǎn)過程中:

(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說(shuō)明理由.

(2)隨著S取不同的值,對(duì)應(yīng)EPQ的個(gè)數(shù)有哪些變化,求出相應(yīng)S的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.

(1)求證:∠FBD=∠CAD;

(2)求證:BE⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)PBC邊上,將CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則cosADF的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案