【題目】如圖,在矩形ABCD中,E為AB邊上一點(diǎn),EC平分∠DEB,F(xiàn)為CE的中點(diǎn),連接AF,BF,過(guò)點(diǎn)E作EH∥BC分別交AF,CD于G,H兩點(diǎn).
(1)求證:DE=DC;
(2)求證:AF⊥BF;
(3)當(dāng)AFGF=28時(shí),請(qǐng)直接寫(xiě)出CE的長(zhǎng).

【答案】
(1)解:∵四邊形ABCD是矩形,

∴AB∥CD,

∴∠DCE=∠CEB,

∵EC平分∠DEB,

∴∠DEC=∠CEB,

∴∠DCE=∠DEC,

∴DE=DC;


(2)解:如圖,連接DF,

∵DE=DC,F(xiàn)為CE的中點(diǎn),

∴DF⊥EC,

∴∠DFC=90°,

在矩形ABCD中,AB=DC,∠ABC=90°,

∴BF=CF=EF= EC,

∴∠ABF=∠CEB,

∵∠DCE=∠CEB,

∴∠ABF=∠DCF,

在△ABF和△DCF中,

,

∴△ABF≌△DCF(SAS),

∴∠AFB=∠DFC=90°,

∴AF⊥BF


(3)解:CE=4

理由如下:∵AF⊥BF,

∴∠BAF+∠ABF=90°,

∵EH∥BC,∠ABC=90°,

∴∠BEH=90°,

∴∠FEH+∠CEB=90°,

∵∠ABF=∠CEB,

∴∠BAF=∠FEH,

∵∠EFG=∠AFE,

∴△EFG∽△AFE,

= ,即EF2=AFGF,

∵AFGF=28,

∴EF=2 ,

∴CE=2EF=4


【解析】(1)根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠DCE=∠DEC,進(jìn)而得出DE=DC;(2)連接DF,根據(jù)等腰三角形的性質(zhì)得出∠DFC=90°,再根據(jù)直角三角形斜邊上中線的性質(zhì)得出BF=CF=EF= EC,再根據(jù)SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,據(jù)此可得AF⊥BF;(3)根據(jù)等角的余角相等可得∠BAF=∠FEH,再根據(jù)公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,進(jìn)而得出EF2=AFGF=28,求得EF=2 ,即可得到CE=2EF=4
【考點(diǎn)精析】通過(guò)靈活運(yùn)用矩形的性質(zhì)和相似三角形的判定與性質(zhì),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、G分別是邊AD、BC的中點(diǎn),AF= AB.

(1)求證:EF⊥AG;
(2)若點(diǎn)F、G分別在射線AB、BC上同時(shí)向右、向上運(yùn)動(dòng),點(diǎn)G運(yùn)動(dòng)速度是點(diǎn)F運(yùn)動(dòng)速度的2倍,EF⊥AG是否成立(只寫(xiě)結(jié)果,不需說(shuō)明理由)?
(3)正方形ABCD的邊長(zhǎng)為4,P是正方形ABCD內(nèi)一點(diǎn),當(dāng)SPAB=SOAB , 求△PAB周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件工程甲獨(dú)做50天可完,乙獨(dú)做75天可完,現(xiàn)在兩個(gè)人合作,但是中途乙因事離開(kāi)幾天,從開(kāi)工后40天把這件工程做完,則乙中途離開(kāi)了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校陽(yáng)光足球俱樂(lè)部計(jì)劃購(gòu)進(jìn)一批甲、乙兩種型號(hào)的足球,乙型足球每個(gè)進(jìn)價(jià)比甲型足球每個(gè)進(jìn)價(jià)多10元,若購(gòu)進(jìn)甲型足球3個(gè)和乙型足球5個(gè),共需要資金370元.

1)求甲、乙兩種型號(hào)的足球進(jìn)價(jià)各是多少元?

2)該商店計(jì)劃購(gòu)進(jìn)這兩種型號(hào)的足球共50個(gè),而可用于購(gòu)買(mǎi)這兩種型號(hào)的足球資金不少于2250元,但又不超過(guò)2270元.該商店有幾種進(jìn)貨方案?

3)已知商店出售一個(gè)甲種足球可獲利6元,出售一個(gè)乙種足球可獲利10元,試問(wèn)在(2)的條件下,商店采用哪種方案可獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)內(nèi)一點(diǎn).

1)如圖1,連接,將沿射線方向平移,得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn),連接.如果,,則

2)如圖2,連接,當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)新建了一棟7層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有八道門(mén),其中四道正門(mén)大小相同,四道側(cè)門(mén)大小也相同.安全檢查中,對(duì)八道門(mén)進(jìn)行了測(cè)試:當(dāng)同時(shí)開(kāi)啟一道正門(mén)和兩道側(cè)門(mén)時(shí),2分內(nèi)可以通過(guò)560名學(xué)生;當(dāng)同時(shí)開(kāi)啟一道正門(mén)和一道側(cè)門(mén)時(shí),4分內(nèi)可以通過(guò)800名學(xué)生.

1)平均每分內(nèi)一道正門(mén)和一道側(cè)門(mén)分別可以通過(guò)多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門(mén)的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分內(nèi)通過(guò)這八道門(mén)安全撤離,假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問(wèn)建造的這八道門(mén)是否符合安全規(guī)定?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料I:

教材中我們學(xué)習(xí)了:若關(guān)于的一元二次方程的兩根為,根據(jù)這一性質(zhì),我們可以求出己知方程關(guān)于的代數(shù)式的值.

問(wèn)題解決:

1)已知為方程的兩根,則: __ _,__ _,那么_ (請(qǐng)你完成以上的填空)

閱讀材料:II

已知,且.求的值.

:可知

,即

是方程的兩根.

問(wèn)題解決:

2)若 ;

3)已知.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M為該拋物線上一動(dòng)點(diǎn),在(2)的條件下,請(qǐng)求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫(xiě)出|PM﹣AM|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案