【題目】有理數(shù)a、b在數(shù)軸上的位置如圖所示,且|a|<|b|,下列各式中正確的個數(shù)是( 。
①a+b<0;②b﹣a>0;③ ;④3a﹣b>0;⑤﹣a﹣b>0.
A. 2個B. 3個C. 4個D. 5個
【答案】C
【解析】
數(shù)軸上右邊的點(diǎn)表示的數(shù)總大于左邊的點(diǎn)表示的數(shù).原點(diǎn)左邊的數(shù)為負(fù)數(shù),原點(diǎn)右邊的數(shù)為正數(shù).從圖中可以看出b<0<a,|b|>|a|,再根據(jù)有理數(shù)的運(yùn)算法則判斷即可.
根據(jù)數(shù)軸上a,b兩點(diǎn)的位置可知,b<0<a,|b|>|a|,
①根據(jù)有理數(shù)的加法法則,可知a+b<0,故正確;
②∵b<a,∴b-a<0,故錯誤;
③∵|a|<|b|,
∴
∵<0,,,
根據(jù)兩個負(fù)數(shù)比較大小,絕對值大的反而小
∴,故正確;
④3a﹣b=3a+(- b)
∵3a>0,-b>0
∴3a﹣b>0,故正確;
⑤∵﹣a>b
∴- a﹣b>0.
故①③④⑤正確,選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A,B,點(diǎn)A、B的橫坐標(biāo)分別為1,﹣2,一次函數(shù)圖象與y軸的交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)求一次函數(shù)的解析式;
(2)對于反比例函數(shù)y=,當(dāng)y<﹣1時,寫出x的取值范圍;
(3)在第三象限的反比例圖象上是否存在一個點(diǎn)P,使得S△ODP=2S△OCA?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)為(1,4)的拋物線與直線交于點(diǎn)A(2,2),直線與軸交于點(diǎn)B與軸交于點(diǎn)C
(1)求的值及拋物線的解析式
(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對稱軸點(diǎn)在軸上,求點(diǎn)P的坐標(biāo)
(3)點(diǎn)D為軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A 、B、E、D為頂點(diǎn)的四邊為平行四邊形時,直接寫出點(diǎn)E的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A(3,0),B(2,﹣3),并且以x=1為對稱軸.
(1)求此函數(shù)的解析式;
(2)作出二次函數(shù)的大致圖象;
(3)在對稱軸x=1上是否存在一點(diǎn)P,使△PAB中PA=PB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有一條直線l:與x軸、y軸分別交于點(diǎn)M、N,一個高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移.
(1)在平移過程中,得到△A1B1C1,此時頂點(diǎn)A1恰落在直線l上,寫出A1點(diǎn)的坐標(biāo) ;
(2)繼續(xù)向右平移,得到△A2B2C2,此時它的外心P恰好落在直線l上,求P點(diǎn)的坐標(biāo);
(3)在直線l上是否存在這樣的點(diǎn),與(2)中的A2、B2、C2任意兩點(diǎn)能同時構(gòu)成三個等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認(rèn)真閱讀下面的材料,完成有關(guān)問題:
材料:在學(xué)習(xí)絕對值時,我們已了解絕對值的幾何意義,如|5-3|表示5、3在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離。因此,一般地,點(diǎn)A,B在數(shù)軸上分別表示有理數(shù)a,b,那么A,B之間的距離(也就是線段AB的長度)可表示為|a-b|。
因此我們可以用絕對值的幾何意義按如下方法求的最小值;
即數(shù)軸上x與1對應(yīng)的點(diǎn)之間的距離,即數(shù)軸上x與2對應(yīng)的點(diǎn)之間的距離,把這兩個距離在同一個數(shù)軸上表示出來,然后把距離相加即可得原式的值.
設(shè)A、B、P三點(diǎn)對應(yīng)的數(shù)分別是1、2、x.
當(dāng)1≤x≤2時,即P點(diǎn)在線段AB上,此時;
當(dāng)x>2時,即P點(diǎn)在B點(diǎn)右側(cè),此時= PA+PB=AB+2PB>AB;
當(dāng)x <1時,即P點(diǎn)在A點(diǎn)左側(cè),此時=PA+PB=AB+2PA>AB;
綜上可知,當(dāng)1≤x≤2時(P點(diǎn)在線段AB上),取得最小值為1.
請你用上面的思考方法結(jié)合數(shù)軸完成以下問題:
(1)滿足的x的取值范圍是 。
(2)求的最小值為 ,最大值為 。
備用圖:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫做格點(diǎn).
△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長線交AB于點(diǎn)F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.
(1)先作的平分線交邊于點(diǎn),再以點(diǎn)為圓心,長為半徑作⊙.
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中與⊙的位置關(guān)系,并證明你的結(jié)論.
(3)若,,求出(1)中⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,完成下列問題.
(1)我們已經(jīng)學(xué)過了乘方運(yùn)算,我們知道表示2個-2相乘,即,那么表示 ,把寫成乘方的形式表示為 ,此時底數(shù)是 .
(2)將(1)中兩個底數(shù)同為-2的冪相乘,即,結(jié)果共有 個-2相乘,寫成冪的形式為 ;
(3)若將(2)中算式中的底數(shù)都換為,則表示 ,計算結(jié)果為 .
若將(2)中算式中的指數(shù)換為正整數(shù),則 ,請用一句話概括你發(fā)現(xiàn)的結(jié)論 ;
(4)利用上述結(jié)論,完成以下填空
若,則 , ;
若,,,寫出的數(shù)量關(guān)系 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com