【題目】如圖,在平面直角坐標(biāo)系中,有一條直線(xiàn)l:與x軸、y軸分別交于點(diǎn)M、N,一個(gè)高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移.
(1)在平移過(guò)程中,得到△A1B1C1,此時(shí)頂點(diǎn)A1恰落在直線(xiàn)l上,寫(xiě)出A1點(diǎn)的坐標(biāo) ;
(2)繼續(xù)向右平移,得到△A2B2C2,此時(shí)它的外心P恰好落在直線(xiàn)l上,求P點(diǎn)的坐標(biāo);
(3)在直線(xiàn)l上是否存在這樣的點(diǎn),與(2)中的A2、B2、C2任意兩點(diǎn)能同時(shí)構(gòu)成三個(gè)等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.
【答案】解:(1)(,3)。
(2)P(3,1)。
(3)存在四個(gè)點(diǎn),與(2)中的A2、B2、C2任意兩點(diǎn)能同時(shí)構(gòu)成三個(gè)等腰三角形,分別是P(3,1),Q(,3),S(4﹣3,),R(4+3,﹣)。
【解析】
試題(1)∵等邊三角形ABC的高為3,∴A1點(diǎn)的縱坐標(biāo)為3。
∵頂點(diǎn)A1恰落在直線(xiàn)l上,∴,解得;x=。
∴A1點(diǎn)的坐標(biāo)是(,3)。
(2)設(shè)P(x,y),連接A2P并延長(zhǎng)交x軸于點(diǎn)H,連接B2P,先求出A2B2=2,HB2=,根據(jù)點(diǎn)P是等邊三角形A2B2C2的外心,得出PH=1,將y=1代入,即可得出點(diǎn)P的坐標(biāo)。
設(shè)P(x,y),連接A2P并延長(zhǎng)交x軸于點(diǎn)H,連接B2P,
在等邊三角△A2B2C2中,高A2H=3,
∴A2B2=2,HB2=。
∵點(diǎn)P是等邊三角形A2B2C2的外心,
∴∠PB2H=30°。
∴PH=1,即y=1。
將y=1代入,解得:x=3。
∴P(3,1)。
(3)分四種情況分別討論。
∵點(diǎn)P是等邊三角形A2B2C2的外心,
∴△PA2B2,△PB2C2,△PA2C2是等腰三角形,
∴點(diǎn)P滿(mǎn)足的條件,由(2)得P(3,1)。
由(2)得,C2(4,0),點(diǎn)C2滿(mǎn)足直線(xiàn)的關(guān)系式,∴點(diǎn)C2與點(diǎn)M重合。
∴∠PMB2=30°。
設(shè)點(diǎn)Q滿(mǎn)足的條件,△QA2B2,△B2QC2,△A2QC2能構(gòu)成等腰三角形,
此時(shí)QA2=QB2,B2Q=B2C2,A2Q=A2C2。
作QD⊥x軸與點(diǎn)D,連接QB2,
∵QB2=2,∠QB2D=2∠PMB2=60°,∴QD=3,∴Q(,3)。
設(shè)點(diǎn)S滿(mǎn)足的條件,△SA2B2,△C2B2S,△C2PA2是等腰三角形,
此時(shí)SA2=SB2,C2B2=C2S,C2A2=C2S。
作SF⊥x軸于點(diǎn)F,
∵SC2=2,∠SB2C2=∠PMB2=30°,∴SF=。∴S(4﹣3,)。
設(shè)點(diǎn)R滿(mǎn)足的條件,△RA2B2,△C2B2R,△C2A2R能構(gòu)成等腰三角形,
此時(shí)RA2=RB2,C2B2=C2R,C2A2=C2R。
作RE⊥x軸于點(diǎn)E,
∵RC2=2,∠RC2E=∠PMB2=30°,∴ER=。∴R(4+3,﹣)。
綜上所述,存在四個(gè)點(diǎn),與(2)中的A2、B2、C2任意兩點(diǎn)能同時(shí)構(gòu)成三個(gè)等腰三角形,分別是P(3,1),Q(,3),S(4﹣3,),R(4+3,﹣)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和
(﹣2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車(chē)100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車(chē)輛數(shù)記為正數(shù),減少的車(chē)輛數(shù)記為負(fù)數(shù)):
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某校九年級(jí)(1)班20名學(xué)生某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)統(tǒng)計(jì)表:
成績(jī)(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)若這20名學(xué)生成績(jī)的平均分?jǐn)?shù)為82分,求x和y的值;
(2)在(1)的條件下,設(shè)這20名學(xué)生本次測(cè)驗(yàn)成績(jī)的眾數(shù)為a,中位數(shù)為b,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有理數(shù)大小關(guān)系判斷正確的是( 。
A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a、b在數(shù)軸上的位置如圖所示,且|a|<|b|,下列各式中正確的個(gè)數(shù)是( 。
①a+b<0;②b﹣a>0;③ ;④3a﹣b>0;⑤﹣a﹣b>0.
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一個(gè)由1~28的連續(xù)整數(shù)排成的“數(shù)陣”.如圖2,用2×2的方框圍住了其中的四個(gè)數(shù),如果圍住的這四個(gè)數(shù)中的某三個(gè)數(shù)的和是27,那么這三個(gè)數(shù)是a,b,c,d中的_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)絕對(duì)值后,我們知道,表示數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離. 如:表示5在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.而,即表示5、0在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.類(lèi)似的,有:表示5、3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示5、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離. 一般地,點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)、,那么A、B之間的距離可表示為.
請(qǐng)根據(jù)絕對(duì)值的意義并結(jié)合數(shù)軸解答下列問(wèn)題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是______;數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上P、Q兩點(diǎn)的距離為3,且點(diǎn)P表示的數(shù)是2,則點(diǎn)Q表示的數(shù)是___________.
(3)點(diǎn)A、B、C在數(shù)軸上分別表示有理數(shù)、、1,那么A到B的距離與A到C的距離之和可表示為 ;
(4)滿(mǎn)足的整數(shù)的值為 .
(5)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知四邊形ABCD是正方形,對(duì)角線(xiàn)AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH.
(1)如圖1,點(diǎn)A、D分別在EH和EF上,連接BH、AF,直接寫(xiě)出BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針?lè)较蛐D(zhuǎn).
①如圖2,判斷BH和AF的數(shù)量關(guān)系,并說(shuō)明理由;
②如果四邊形ABDH是平行四邊形,請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形;如果四方形ABCD的邊長(zhǎng)為,求正方形EFGH的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com