【題目】如圖,已知線段AB=2,MN⊥AB于點(diǎn)M,且AM=BM,P是射線MN上一動(dòng)點(diǎn),E,D分別是PA,PB的中點(diǎn),過點(diǎn)A,M,D的圓與BP的另一交點(diǎn)C(點(diǎn)C在線段BD上),與MN的另一個(gè)交點(diǎn)R,連結(jié)AC,DE.
(1)當(dāng)∠APB=28°時(shí),求∠B的度數(shù)和弧CM的度數(shù).
(2)求證:AC=AB.
(3)若MP=4,點(diǎn)P為射線MN上的一個(gè)動(dòng)點(diǎn),
①求MR的值
②在點(diǎn)P的運(yùn)動(dòng)過程中,取四邊形ACDE一邊的兩端點(diǎn)和線段MP上一點(diǎn)Q,若以這三點(diǎn)為頂點(diǎn)的三角形是直角三角形,且Q為銳角頂點(diǎn),求此時(shí)所有滿足條件的MQ的值.
【答案】(1)∠B=76°,=56°;(2)證明見解析;(3)①MR=;②MQ的值為或或.
【解析】
(1)連接MD,結(jié)合垂直平分線的性質(zhì)與等腰三角形性質(zhì)結(jié)合三角形內(nèi)角和定理,中位線定理求解即可;
(2)求證∠ABC=∠ACB即可;
(3)①連接CR,AR,結(jié)合勾股定理求解即可;②分為當(dāng)∠ACQ=90°時(shí);當(dāng)∠QCD=90°時(shí);當(dāng)∠QDC=90°時(shí);當(dāng)∠AEQ=90°時(shí),分類討論即可.
解:(1)∵MN⊥AB,AM=BM,
∴PA=PB,
∴∠PAB=∠B,
∵∠APB=28°,
∴∠B=76°,
如圖1,連接MD,
∵MD為△PAB的中位線,
∴MD∥AP,
∴∠MDB=∠APB=28°,
∴=2∠MDB=56°;
(2)∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,
∴∠BAP=∠ACB,
∵∠BAP=∠B,
∴∠ACB=∠B,
∴AC=AB;
(3)①如圖2,記MP與圓的另一個(gè)交點(diǎn)為R,
∵MD是Rt△MBP的中線,
∴DM=DP,
∴∠DPM=∠DMP=∠RCD,
∴RC=RP,
∵∠ACR=∠AMR=90°,
∴AM2+MR2=AR2=AC2+CR2,
∴12+MR2=22+PR2,
∴12+(4﹣PR)2=22+PR2,
∴PR=,
∴MR=,
②Ⅰ.當(dāng)∠ACQ=90°時(shí),AQ為圓的直徑,
∴Q與R重合,
∴MQ=MR=;
Ⅱ.如圖3,當(dāng)∠QCD=90°時(shí),
在Rt△QCP中,PQ=2PR=,
∴MQ=;
Ⅲ.如圖4,當(dāng)∠QDC=90°時(shí),
∵BM=1,MP=4,
∴BP=,
∴DP=BP=,
∵cos∠MPB=,
∴PQ=,
∴MQ=;
Ⅳ.如圖5,當(dāng)∠AEQ=90°時(shí),
由對稱性可得∠AEQ=∠BDQ=90°,
∴MQ=;
綜上所述,MQ的值為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B(0,3)和C(0,﹣),點(diǎn)A在x軸正半軸上,且滿足∠BAO=30°.
(1)過點(diǎn)C作CE⊥AB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線段OC上一動(dòng)點(diǎn),連接GF,將△OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O′處,連接O′C,求線段OF的長以及線段O′C的最小值;
(2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將△BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BC⊥AB于點(diǎn)B,將旋轉(zhuǎn)后的△BDC沿直線AB平移,平移中的△BDC記為△B′D′C′,設(shè)直線B′C′與x軸交于點(diǎn)M,N為平面內(nèi)任意一點(diǎn),當(dāng)以B′、D′、M、N為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的切線,切點(diǎn)為,是的直徑,連接交于.過點(diǎn)作于點(diǎn),交于,連接,.
(1)求證:是的切線;
(2)求證:為的內(nèi)心;
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)和反比例函數(shù).
(1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點(diǎn).
①求,的值;
②直接寫出當(dāng)時(shí)的范圍;
(2)如圖2,過點(diǎn)作軸的平行線與函數(shù)的圖象相交于點(diǎn),與反比例函數(shù)的圖象相交于點(diǎn).
①若,直線與函數(shù)的圖象相交點(diǎn).當(dāng)點(diǎn)、、中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求的值;
②過點(diǎn)作軸的平行線與函數(shù)的圖象相交于點(diǎn).當(dāng)的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)、間的距離與點(diǎn)、間的距離之和始終是一個(gè)定值.求此時(shí)的值及定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ ABC 在直角坐標(biāo)系內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-1,0)、C(0,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ ABC 關(guān)于 y 軸的軸對稱圖形△ A1B1C1;
(2)一點(diǎn) O 為位擬中心,在網(wǎng)格內(nèi)畫出所有符合條件的△ A2B2C2,使△ A2B2C2 與△ A1B1C1 位擬,且位擬比為 2:1;
(3) △ A1B1C1 與△ A2B2C2 的面積比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,對角線 AC、BD 相交于點(diǎn) O,過點(diǎn) O 的兩條直線分別交邊 AB、CD、AD、BC 于點(diǎn) E、F、G、H.
(感知)如圖①,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG= S 正方形 ABCD;
(拓展)如圖②,若四邊形 ABCD 是矩形,且 S 四邊形 AEOG=S 矩形 ABCD,設(shè) AB=a, AD=b,BE=m,求 AG 的長(用含 a、b、m 的代數(shù)式表示);
(探究)如圖③,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年中秋節(jié)來期間,某超市以每盒80元的價(jià)格購進(jìn)了1000盒月餅,第一周以每盒168元的價(jià)格銷售了300盒,第二周如果單價(jià)不變,預(yù)計(jì)仍可售出300盒,該超市經(jīng)理為了增加銷量,決定降價(jià),據(jù)調(diào)查,單價(jià)每降低1元,可多售出10盒,但最低每盒要贏利30元,第二周結(jié)束后,該超市將對剩余的月餅一次性賠錢甩賣,此時(shí)價(jià)格為70元/盒.
(1)若設(shè)第二周單價(jià)降低x元,則第二周的單價(jià)是 ______ ,銷量是 ______ ;
(2)經(jīng)兩周后還剩余月餅 ______ 盒;
(3)若該超市想通過銷售這批月餅獲利51360元,那么第二周的單價(jià)應(yīng)是多元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正方形ABCD對角線AC上一點(diǎn),點(diǎn)E在BC上,且PE=PB.
(1)求證:PE=PD;
(2)連接DE,試判斷∠PED的度數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,斜邊AC的中點(diǎn)M關(guān)于BC的對稱點(diǎn)O,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△DCE,連接BD,BE,如圖所示.
(1)在①,②,③中,等于旋轉(zhuǎn)角的是 (填出滿足條件的角的序號(hào));
(2)若求的大。ㄓ煤的式子表示);
(3)點(diǎn)N是BD的中點(diǎn),連接MN,用等式表示線段MN與BE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com