【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B(0,3)和C(0,﹣),點(diǎn)A在x軸正半軸上,且滿足∠BAO=30°.
(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線段OC上一動(dòng)點(diǎn),連接GF,將△OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O′處,連接O′C,求線段OF的長(zhǎng)以及線段O′C的最小值;
(2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將△BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BC⊥AB于點(diǎn)B,將旋轉(zhuǎn)后的△BDC沿直線AB平移,平移中的△BDC記為△B′D′C′,設(shè)直線B′C′與x軸交于點(diǎn)M,N為平面內(nèi)任意一點(diǎn),當(dāng)以B′、D′、M、N為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).
【答案】(1) ;(2)或或或
【解析】
(1)解直角三角形求出OF,CF,根據(jù)CO′≥CF﹣O′F求解即可.
(2)分四種情形:①如圖2中,當(dāng)B′D′=B′M=BD=時(shí),可得菱形MND′B′.②如圖3中,當(dāng)B′M是菱形的對(duì)角線時(shí).③如圖4中,當(dāng)B′D′是菱形的對(duì)角線時(shí).④如圖5中,當(dāng)MD′是菱形的對(duì)角線時(shí),分別求解即可解決問(wèn)題.
(1)如圖1中,
∵∠AOB=90°,∠OAB=30°,
∴∠CBE=60°,
∵CE⊥AB,
∴∠CEB=90°,∠BCE=30°,
∵C(0,-),
∴OC=,OF=OCtan30°=,CF=2OF=3,
由翻折可知:FO′=FO=,
∴CO′≥CF-O′F,
∴CO′≥,
∴線段O′C的最小值為.
(2)①如圖2中,當(dāng)B′D′=B′M=BD=時(shí),可得菱形MND′B′.
在Rt△AMB′中,AM=2B′M=2,
∴OM=AM-OA=2-3,
∴M(3-2,0).
②如圖3中,當(dāng)B′M是菱形的對(duì)角線時(shí),由題意B′M=2OB=6,此時(shí)AM=12,OM=12-3,可得M(3-12,0).
③如圖4中,當(dāng)B′D′是菱形的對(duì)角線時(shí),由∠D′B′M=∠DBO
可得,所以B′M=
則在RT△AM B′中,AM=2B′M=,所以OM=OA-AM=3-,所以M(3-,0).
④如圖5中,當(dāng)MD′是菱形的對(duì)角線時(shí),MB′=B′D′=,可得AM=2,OM=OA+AM=3+2,所以M(3+2,0).
綜上所述,滿足條件的點(diǎn)M的坐標(biāo)為(3+2,0)或(3-12,0)或(3-,0)或(3+2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,正方形DEFG的頂點(diǎn)D,G分別在AB,AC上,頂點(diǎn)E,F(xiàn)在BC上.若△ADG、△BED、△CFG的面積分別是1、3、1,則正方形的邊長(zhǎng)為( )
A. B. C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車分別從相距420km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達(dá)C地后因有事立即按原路原速返回A地,乙車從B地直達(dá)A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問(wèn)題:
(1)甲車的速度是 千米/時(shí),乙車的速度是 千米/時(shí);
(2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;
(3)甲車出發(fā)多長(zhǎng)時(shí)間后兩車相距90千米?請(qǐng)你直接寫(xiě)出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+5與雙曲線(x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線(x>0)的交點(diǎn)有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 0個(gè),或1個(gè),或2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:一般情形下等式=1不成立,但有些特殊實(shí)數(shù)可以使它成立,例如:x=2,y=2時(shí),=1成立,我們稱(2,2)是使=1成立的“神奇數(shù)對(duì)”.請(qǐng)完成下列問(wèn)題:
(1)數(shù)對(duì)(,4),(1,1)中,使=1成立的“神奇數(shù)對(duì)”是 ;
(2)若(5﹣t,5+t)是使=1成立的“神奇數(shù)對(duì)”,求t的值;
(3)若(m,n)是使=1成立的“神奇數(shù)對(duì)”,且a=b+m,b=c+n,求代數(shù)式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過(guò)點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,DE∥AC交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:BD=DE;
(2)若∠ACB=30°,BD=8,求四邊形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形有一個(gè)銳角為60°,一條對(duì)角線長(zhǎng)為4cm,則其面積為_______ cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com