19.分解因式:ax3-4ax=ax(a+2)(a-2).

分析 原式提取ax,再利用平方差公式分解即可.

解答 解:原式=ax(x2-4)=ax(x+2)(x-2),
故答案為:ax(a+2)(a-2)

點(diǎn)評(píng) 此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.兩個(gè)完全相同的三角形紙片,在平面直角坐標(biāo)系中的擺放位置如圖所示,點(diǎn)P與點(diǎn)P′是一對(duì)對(duì)應(yīng)點(diǎn),若點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P′的坐標(biāo)為( 。
A.(3-a,-b)B.(b,3-a)C.(a-3,-b)D.(b+3,a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.當(dāng)y≠0時(shí),$\frac{2x}$=$\frac{by}{2xy}$,這種變形的依據(jù)是分式的基本性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1).如圖1,小明和小亮在研究一個(gè)數(shù)學(xué)問(wèn)題:已知AB∥CD,AB和CD都不經(jīng)過(guò)點(diǎn)P,探索∠P與∠A,∠C的數(shù)量關(guān)系.

小明是這樣證明的:過(guò)點(diǎn)P作PQ∥AB
∴∠APQ=∠A(兩直線平行,內(nèi)錯(cuò)角相等,)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(平行于同一條直線的兩條直線互相平行)             
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過(guò)點(diǎn)作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請(qǐng)?jiān)谏厦孀C明過(guò)程的過(guò)程的橫線上,填寫依據(jù);兩人的證明過(guò)程中,完全正確的是小明.
(2)應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠APC的度數(shù)為100°;
(3)拓展:
在圖3中,探索∠APC與∠A,∠C的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.變量y與x之間的關(guān)系式為y=$\frac{1}{2}{x^2}$+x+1,當(dāng)自變量x=2時(shí),因變量y的值是5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.閱讀下列材料,并解答下列問(wèn)題,如圖1,AB∥CD,EO和FO交于O,過(guò)點(diǎn)O作AB的平行線,我們可以得出∠2與∠1,∠3之間的數(shù)量關(guān)系是∠2=∠1+∠3.
(1)如圖2,直線l1∥l2,AB⊥l1,垂足為O,BC與l2相交于點(diǎn)E,若∠1=30°,則∠B=120°.
(2)如圖3,AB∥CD,則∠1,∠2,∠3,∠4之間的數(shù)量關(guān)系是什么?并說(shuō)明理由.
(3)如圖4,AB∥CD,圖中∠1,∠2,∠3,…,∠2n-1,∠2n之間有什么關(guān)系?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知四邊形ABCD是正方形,點(diǎn)B,C分別在兩條直線y=2x和y=kx上,點(diǎn)A,D是x軸上兩點(diǎn).
(1)若此正方形邊長(zhǎng)為2,k=$\frac{2}{3}$;
(2)若此正方形邊長(zhǎng)為a,k的值是否會(huì)發(fā)生變化?若不會(huì)發(fā)生變化說(shuō)明理由;若會(huì)發(fā)生變化,試求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:
(1)0.125×104×8×104
(2)[$\frac{1}{3}$a3b5•(-15ab)+(a2b32]÷(2a3b3
(3)先化簡(jiǎn),再求值:(-2x+1)(-2x-1)-2x(x-1),其中x=$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在一幅長(zhǎng)80cm,寬50cm的矩形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如果要使整個(gè)掛圖的面積是ycm2,設(shè)金色紙邊的寬為xcm,要求紙邊的寬度不得少于1cm,同時(shí)不得超過(guò)2cm.
(1)求出y關(guān)于x的函數(shù)解析式,并直接寫出自變量的取值范圍;
(2)此時(shí)金色紙邊的寬應(yīng)為多少cm時(shí),這幅掛圖的面積最大?求出最大面積的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案