【題目】如圖,已知點A是雙曲線在第一象限分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內(nèi),且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線上運動,則k的值是 .
【答案】﹣3
【解析】
試題根據(jù)反比例函數(shù)的性質(zhì)得出OA=OB,連接OC,過點A作AE⊥y軸,垂足為E,過點C作CF⊥y軸,垂足為F,根據(jù)等邊三角形的性質(zhì)和解直角三角形求出OC=OA,求出△OFC∽△AEO,相似比,求出面積比,求出△OFC的面積,即可得出答案.∵雙曲線的圖象關(guān)于原點對稱,
∴點A與點B關(guān)于原點對稱, ∴OA=OB, 連接OC,如圖所示, ∵△ABC是等邊三角形,OA=OB,
∴OC⊥AB.∠BAC=60°, ∴tan∠OAC==, ∴OC=OA,
過點A作AE⊥y軸,垂足為E,過點C作CF⊥y軸,垂足為F, ∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF, ∴△OFC∽△AEO,相似比, ∴面積比,
∵點A在第一象限,設點A坐標為(a,b), ∵點A在雙曲線上, ∴S△AEO=ab=,
∴S△OFC=FCOF=, ∴設點C坐標為(x,y), ∵點C在雙曲線上, ∴k=xy,
∵點C在第四象限, ∴FC=x,OF=﹣y. ∴FCOF=x(﹣y)=﹣xy=﹣
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在邊CD上的點F處,若△DEF的周長為8,△CBF的周長為18,則FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等腰三角形,AB=AC,D為△ABC內(nèi)一點,連接AD,將線段AD繞點A旋轉(zhuǎn)至AE,使得∠DAE=∠BAC,F(xiàn),G,H分別為BC,CD,DE的中點,連接BD,CE,GF,GH.
(1)求證:GH=GF;
(2)試說明∠FGH與∠BAC互補.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心、OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=2CD·OE;
(3)若cos∠BAD=,BE=6,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖雙曲線(x>0)與直線EF交于點A,點B,且AE=AB=BF,連結(jié)AO,BO,它們分別與雙曲線(x>0)交于點C,點D,則:
(1)AB與CD的位置關(guān)系是__________;
(2)四邊形ABDC的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)).
(1)求證:不論為何值,該函數(shù)的圖像與軸總有公共點;
(2)當取什么值時,該函數(shù)的圖像與軸的交點在軸的下方?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)。
(1)以O點為位似中心在y軸的左側(cè)將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點的對應點B、C的坐標;
(3)如果△OBC內(nèi)部一點M的坐標為(x,y),寫出M的對應點M的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.
()請直接寫出袋子中白球的個數(shù).
()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形 OABC 是矩形,點 B 的坐標為(4,3).
(1)直接寫出A、C兩點的坐標;
(2)平行于對角線AC的直線 m 從原點O出發(fā),沿 x 軸正方向以每秒 1 個單位長度的速度運動,設直線 m 與矩形 OABC 的兩邊分別交于點M、N,設直線m運動的時間為t(秒).
①若 MN=AC,求 t 的值;
②設△OMN 的面積為S,當 t 為何值時,S=.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com