【題目】如圖,△ABC為等腰三角形,AB=AC,D為△ABC內一點,連接AD,將線段AD繞點A旋轉至AE,使得∠DAE=∠BAC,F,G,H分別為BC,CD,DE的中點,連接BD,CE,GF,GH.
(1)求證:GH=GF;
(2)試說明∠FGH與∠BAC互補.
【答案】(1)證明見解析;(2)說明見解析.
【解析】
(1)首先得出△ABD≌△ACE(SAS),進而利用三角形中位線定理得出GH=GF;
(2)利用全等三角形的性質結合平行線的性質得出∠FGH=∠DGF+∠HGD進而得出答案.
(1)∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∵F,G,H分別為BC,CD,DE的中點,
∴HG∥CE,GF∥BD,且GH=CE,GF=BD,
∴GH=GF;
(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵HG∥CE,GF∥BD,
∴∠HGD=∠ECD,∠GFC=∠DBC,
∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,
∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,
∴∠FGH=∠DGF+∠HGD
=∠DBC+∠GCF+∠ACD+∠ABD
=∠ABC+∠ACB
=180°﹣∠BAC,
∴∠FGH與∠BAC互補.
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2,求⊙O的半徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).下列結論:
①ac<0;②4a﹣2b+c>0;③拋物線與x軸的另一個交點是(4,0);
④點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.其中正確的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數關系,部分數據如表所示,其中3.5≤x≤5.5,另外每天還需支付其他各項費用80元.
銷售單價x(元) | 3.5 | 5.5 |
銷售量y(袋) | 280 | 120 |
(1)請直接寫出y與x之間的函數關系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AC⊥BC,垂足為C,AC=4,BC=3,將線段AC繞點A按逆時針方向旋轉60°,得到線段AD,連接DC,DB.
(1)求線段CD的長;
(2)求線段DB的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在北海市創(chuàng)建全國文明城活動中,需要30名志愿者擔任“講文明樹新風”公益廣告宣傳工作,其中男生18人,女生12人.
(1)若從這30人中隨機選取一人作為“展板掛圖”講解員,求選到女生的概率;
(2)若“廣告策劃”只在甲、乙兩人中選一人,他們準備以游戲的方式決定由誰擔任,游戲規(guī)則如下:將四張牌面數字分別為2,3,4,5的撲克牌洗勻后,數字朝下放于桌面,從中任取2張,若牌面數字之和為偶數,則甲擔任,否則乙擔任.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉,當點A′落在AB邊上時,CA′旋轉所構成的扇形的弧長為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是雙曲線在第一象限分支上的一個動點,連結AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內,且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線上運動,則k的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用配方法解下列方程,其中應在方程左右兩邊同時加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com