精英家教網 > 初中數學 > 題目詳情

在二次函數中,函數y與自變量x的部分對應值如下表:

x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求這個二次函數的表達式;
(2)當x的取值范圍滿足什么條件時,?

(1) y=(x-1)(x-3)(或y=x2-4x+3);(2) 當1<x<3時,y<0.

解析試題分析:(1)根據表中的數據知,該函數與x軸的兩個交點坐標是(1,0),(3,0),設y=a(x-1)(x-3)(a≠0),然后把點(0,3)代入求得a值;
(2)根據二次函數的性質進行解答.
試題解析:(1)∵函數與x軸的兩個交點坐標是(1,0),(3,0),
∴設y=a(x-1)(x-3)(a≠0).
又∵該函數圖象經過點(0,3),
∴3=3a,
解得,a=1.
故該函數解析式為y=(x-1)(x-3)(或y=x2-4x+3);
(2)由(1)知,該函數解析式為y=(x-1)(x-3),則該拋物線的開口方向向上.
∵y<0,
∴1<x<3.
答:當1<x<3時,y<0.
考點: 1.待定系數法求二次函數解析式,2.二次函數的性質.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,已知△OAB的頂點A(-6,0),B(0,2),O是坐標原點, 將△OAB繞點O按順時針旋轉90°,得到△ODC.

(1)寫出C點的坐標為          ;
(2)設過A,D,C三點的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某區(qū)政府大力扶持大學生創(chuàng)業(yè).李剛在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:y=-10x+500.
(1)設李剛每月獲得利潤為w(元),當銷售單價定為每臺多少元時,每月可獲得最大利潤?
(2)如果李剛想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李剛想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交于A、B兩點,與y軸交于點C.

(1)點A的坐標為          點B的坐標為         ,點C的坐標為        ;
(2)設拋物線y=x2-2x-3的頂點坐標為M,求四邊形ABMC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

為了改善市民的生活環(huán)境,我市在某河濱空地處修建一個如圖所示的休閑文化廣場.在Rt△內修建矩形水池,使頂點、在斜邊上,、分別在直角邊、上;又分別以、、為直徑作半圓,它們交出兩彎新月(圖中陰影部分),兩彎新月部分栽植花草;其余空地鋪設地磚.其中,.設米,米.

(1)求之間的函數解析式;
(2)當為何值時,矩形的面積最大?最大面積是多少?
(3)求兩彎新月(圖中陰影部分)的面積,并求當為何值時,矩形的面積等于兩彎新月面積的?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(1)已知二次函數,請你化成的形式,并在直角坐標系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點,且,請直接寫出的大小關系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結果.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,在平面直角坐標系中,有一矩形ABCD,其三個頂點的坐標分別為A(2,0)、B(8,0)、C(8,3).將直線l:y=-3x-3以每秒3個單位的速度向右運動,設運動時間為t秒.

(1)當t=_________時,直線l經過點A.(直接填寫答案)
(2)設直線l掃過矩形ABCD的面積為S,試求S>0時S與t的函數關系式.
(3)在第一象限有一半徑為3、且與兩坐標軸恰好都相切的⊙M,在直線l出發(fā)的同時,⊙M以每秒2個單位的速度向右運動,如圖2所示,則當t為何值時,直線l與⊙M相切?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數y=x2-2x-3的圖象與x軸交于A、B兩點(A在B的左側),與y軸交于點C,頂點為D.

(1)求點A、B、C、D的坐標,并在下面直角坐標系中畫出該二次函數的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,用長為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計).

(1)求出y與x的函數關系式;
(2)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.

查看答案和解析>>

同步練習冊答案