(1)已知二次函數(shù),請(qǐng)你化成的形式,并在直角坐標(biāo)系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點(diǎn),且,請(qǐng)直接寫出、的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來(lái),要求保留畫圖痕跡,說(shuō)明結(jié)果.

(1),圖形見解析;(2);(3)圖形見解析.

解析試題分析:(1)根據(jù)配方法整理即可,再求出x=﹣1、0、1、2、3時(shí)的函數(shù)值,然后畫出函數(shù)圖象即可;
(2)求出對(duì)稱軸為直線x=1,然后根據(jù)x<1,y隨x的增大而減小解答;
(3)求出y=﹣2時(shí)對(duì)應(yīng)的x的近似值即可.
試題解析:(1).
畫圖象,如圖所示.
(2)函數(shù)的對(duì)稱軸為直線x=1,∵x1<x2<1,∴
(3)如圖所示,將拋物線向上平移兩個(gè)單位后得到拋物線,拋物線與x軸交于點(diǎn)A、B,則A、B兩點(diǎn)的橫坐標(biāo)即為方程的根.

考點(diǎn):二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周長(zhǎng);
(2)若△AED以每秒2個(gè)單位長(zhǎng)度的速度沿DC向右平行移動(dòng),得到△A0E0D0,當(dāng)A0D0與BC重合時(shí)停止移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△A0E0D0與△BDC重疊的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動(dòng)后得到△BEC,將△BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中,B的對(duì)應(yīng)點(diǎn)為B1,E的對(duì)應(yīng)點(diǎn)為E1,設(shè)直線B1E1與直線BE交于點(diǎn)P、與直線CB交于點(diǎn)Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某相宜本草護(hù)膚品專柜計(jì)劃在春節(jié)前夕促銷甲、乙兩款護(hù)膚品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下兩種信息:
信息一:銷售甲款護(hù)膚品所獲利潤(rùn)y(元)與銷售量x(件)之間存在二次函數(shù)關(guān)系y=ax2+bx.在x=10時(shí),y=140;當(dāng)x=30時(shí),y=360.
信息二:銷售乙款護(hù)膚品所獲利潤(rùn)y(元)與銷售量x(件)之間存在正比例函數(shù)關(guān)系y=3x.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題;
(1)求信息一中二次函數(shù)的表達(dá)式;
(2)該相宜本草護(hù)膚品專柜計(jì)劃在春節(jié)前夕促銷甲、乙兩款護(hù)膚品共100件,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售甲、乙兩款護(hù)膚品獲得的利潤(rùn)之和最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線經(jīng)過(guò)點(diǎn)(3,0),(-1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在二次函數(shù)中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:

x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)當(dāng)x的取值范圍滿足什么條件時(shí),?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線.正在甩繩的甲.乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過(guò)她的頭頂點(diǎn)E.以點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系, 設(shè)此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式 .

(2)如果小華站在OD之間,且離點(diǎn)O的距離為3米,當(dāng)繩子甩到最高處時(shí)剛好通過(guò)他的頭頂,小華的身高為               ;
(3)如果身高為1.4米的小麗站在OD之間,且離點(diǎn)O的距離為t米, 繩子甩到最高處時(shí)超過(guò)她的頭頂,請(qǐng)結(jié)合圖像,寫出t的取值范圍                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系xoy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線經(jīng)過(guò)點(diǎn)A、B和D(4,).

(1)求拋物線的表達(dá)式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2).
①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取時(shí),在拋物線上是否存在點(diǎn)R,使得以點(diǎn)P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并在右圖中畫出函數(shù)的圖像;
(2)求△PBQ面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

二次函數(shù)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:

(1)寫出方程的兩個(gè)根.
(2)寫出不等式的解集.
(3)寫出的增大而減小的自變量的取值范圍.
(4)若方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案