如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn), 將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.

(1)寫出C點(diǎn)的坐標(biāo)為          ;
(2)設(shè)過A,D,C三點(diǎn)的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.

(1)C(2,0),D(0,6);(2)y=﹣x2﹣2x+6;(3)證明見解析.

解析試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì),可得OC=OB,OD=OA,進(jìn)而可得C、D兩點(diǎn)的坐標(biāo);
(2)由于拋物線過點(diǎn)A(﹣6,0),C(2,0),所以設(shè)拋物線的解析式為y=a(x+6)(x﹣2)(a≠0),再將D(0,6)代入,求出a的值,得出拋物線的解析式,然后利用配方法求出頂點(diǎn)E的坐標(biāo);
(3)已知A、B、E三點(diǎn)的坐標(biāo),運(yùn)用兩點(diǎn)間的距離公式計(jì)算得出AB2=40,BE2=40,AE2=80,則AB2+BE2=AE2,根據(jù)勾股定理的逆定理即可證明AB⊥BE.
試題解析:(1)∵將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC,
∴△ODC≌△OAB,
∴OC=OB=2,OD=OA=6,
∴C(2,0),D(0,6);
(2)∵拋物線過點(diǎn)A(﹣6,0),C(2,0),
∴可設(shè)拋物線的解析式為y=a(x+6)(x﹣2)(a≠0),
∵D(0,6)在拋物線上,
∴6=﹣12a,
解得a=﹣
∴拋物線的解析式為y=﹣(x+6)(x﹣2),即y=﹣x2﹣2x+6;
(3)∵y=﹣x2﹣2x+6=﹣(x+2)2+8,
∴頂點(diǎn)E的坐標(biāo)為(﹣2,8),
連接AE.

∵A(﹣6,0),B(0,2),E(﹣2,8),
∴AB2=62+22=40,BE2=(﹣2﹣0)2+(8﹣2)2=40,AE2=(﹣2+6)2+(8﹣0)2=80,
∴AB2+BE2=AE2
∴AB⊥BE..
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動(dòng)點(diǎn),過點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長(zhǎng)取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18 m.

(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.

(1)求拋物線的對(duì)稱軸;
(2)寫出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周長(zhǎng);
(2)若△AED以每秒2個(gè)單位長(zhǎng)度的速度沿DC向右平行移動(dòng),得到△A0E0D0,當(dāng)A0D0與BC重合時(shí)停止移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△A0E0D0與△BDC重疊的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動(dòng)后得到△BEC,將△BEC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過程中,B的對(duì)應(yīng)點(diǎn)為B1,E的對(duì)應(yīng)點(diǎn)為E1,設(shè)直線B1E1與直線BE交于點(diǎn)P、與直線CB交于點(diǎn)Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我區(qū)某房地產(chǎn)開發(fā)公司于2013年5月份完工一商品房小區(qū),6月初開始銷售,其中6月的銷售單價(jià)為0.7萬(wàn)元/m2,7月的銷售單價(jià)為0.72萬(wàn)元/m2,且每月銷售價(jià)格(單位:)與月份x(6≤x≤11,x為整數(shù))之間滿足一次函數(shù)關(guān)系,每月的銷售面積為(單位:),其中y2=-2000x+26000(6≤x≤11,x為整數(shù)).
(1)求與月份的函數(shù)關(guān)系式;
(2)6~11月中,哪一個(gè)月的銷售額最高?最高銷售額為多少萬(wàn)元?
(3)2013年11月時(shí),因受某些因素影響,該公司銷售部預(yù)計(jì)12月份的銷售面積會(huì)在11月銷售面積基礎(chǔ)上減少,于是決定將12月份的銷售價(jià)格在11月的基礎(chǔ)上增加,該計(jì)劃順利完成.為了盡快收回資金,2014年1月公司進(jìn)行降價(jià)促銷,該月銷售額為(1500+600a)萬(wàn)元.這樣12月、1月的銷售額共為萬(wàn)元,請(qǐng)根據(jù)以上條件求出的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某職業(yè)學(xué)校三名學(xué)生到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話。
A:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
B:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
C:通過調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為何值時(shí),該超市銷售這種水果每天獲取的利潤(rùn)達(dá)到600元?【利潤(rùn)=銷售量×(銷售單價(jià)-進(jìn)價(jià))】
(3)一段時(shí)間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時(shí)該超市銷售這種水果每天獲取的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在二次函數(shù)中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:

x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)當(dāng)x的取值范圍滿足什么條件時(shí),?

查看答案和解析>>

同步練習(xí)冊(cè)答案