【題目】推理填空,如圖,已知∠A=∠F,∠C=∠D,試說明 BD∥CE.
解:∵∠A=∠F(已知),
∴ ∥ ( ),
∴∠D+∠DBC=180°( ),
又∵∠C=∠D(已知),
∴∠C+∠DBC=180°(等量代換),
∴BD∥CE( )
【答案】AC;DF;內(nèi)錯角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補;同旁內(nèi)角互補、兩直線平行.
【解析】
由已知內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行得到DF與AC平行,再利用兩直線平行同旁內(nèi)角互補,得到一組等量關(guān)系,與已知角等量代換得到一對同旁內(nèi)角互補,利用同旁內(nèi)角互補兩直線平行即可得證
解:解:∵∠A=∠F(已知),
∴AC∥DF(內(nèi)錯角相等,兩直線平行),
∴∠D+∠DBC=180°(兩直線平行,同旁內(nèi)角互補 ),
又∵∠C=∠D(已知),
∴∠C+∠DBC=180°(等量代換),
∴BD∥CE(同旁內(nèi)角互補、兩直線平行)
故答案為:AC;DF;內(nèi)錯角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補;同旁內(nèi)角互補、兩直線平行.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩根長度為12米的繩子,一端系在旗桿上的同一位置A點,另一端分別固定在地面上的兩個木樁B,C上(繩結(jié)處的誤差忽略不計),現(xiàn)在只有一把卷尺,如何檢驗旗桿是否垂直于地面BC?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“一帶一路”的進一歩推進,我國瓷器(“china”)更為“一帶一路”沿踐人民所推崇,一外國商戶準這一商機,向我國一瓷器經(jīng)銷商咨詢工藝品茶具,得到如下信息:
(1)每個茶壺的批發(fā)價比每個茶杯多120元;
(2)一套茶具包括一個茶壺與四個茶杯;
(3)4套茶具的批發(fā)價為1280元.
根據(jù)以上僖息:
(1)求每個茶壺與每個茶杯的批發(fā)價;
(2)若該商戶購進茶杯的數(shù)量是茶壺數(shù)量的5倍還多18個,并且茶壺和茶杯的總數(shù)不超過320個,該商戶計劃將一半的茶具按每套500元成套銷售,其余按每個茶壺300元,每個茶杯80元零售.沒核商戶購進茶壺m個.
①試用含m的關(guān)系式表示出該商戶計劃獲取的利潤;
②請幫助他設(shè)計一種獲取利潤最大的方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個角各剪去一個邊長相同的正方形后,把剩余部分折成一個無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積為264cm2,求剪掉的正方形紙片的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)小明在一次高爾夫球的練習(xí)中,在點O處擊球,其飛行路線滿足拋物線,其中y(m)是球的飛行高度, (m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)求拋物線的頂點坐標及球飛行的最大水平距離;
(2)若小明第二次仍從點O處擊球,球飛行的最大高度不變且剛好進洞,求球飛行的拋物線路線滿足的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索:如圖1,在中,,.求證:;
發(fā)現(xiàn):直角三角形中,如果有一個銳角等于,那么這個角所對的直角邊等于斜邊的_______.
應(yīng)用:如圖2,在中,,,,點從點出發(fā)沿方向以秒的速度向點勻速運動,同時點從點出發(fā)沿方向以秒的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點運動的時間是秒().過點作于點,連接,.
(1)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請說明理由;
(2)當為何值時,為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決下列兩個問題:
(1)如圖1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.點P在直線EF上,直接寫出PA+PB的最小值,并在圖中標出當PA+PB取最小值時點P的位置;
解:PA+PB的最小值為 .
(2)如圖2.點M、N在∠BAC的內(nèi)部,請在∠BAC的內(nèi)部求作一點P,使得點P到∠BAC兩邊的距離相等,且使PM=PN.(尺規(guī)作圖,保留作圖痕跡,無需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①若,則;②直角三角形的兩個銳角互余:③如果,那么④個角都是直角的四邊形是正方形.其中,原命題和逆命題均為真命題的有( )
A.個B.個C.個D.個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com