【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為2cmP的圓心在射線OA上,且與點O的距離為6cm,如果P1cm/s的速度沿直線ABAB的方向移動,那么P與直線CD相切時P運動的時間是(

A.3秒或10B.3秒或8C.2秒或8D.2秒或10

【答案】D

【解析】

PHCDH,根據(jù)直角三角形的性質(zhì)得到OP2PH,分點POA上、點PAO的延長線上兩種情況可,根據(jù)切線的性質(zhì)解答.

解:作PHCDH,

RtOPH中,∠AOC30°,

OP2PH,

當點POA上,P與直線CD相切時,OP2PH4cm,

∴點P運動的距離為642,

P運動的時間是2秒,

當點PAO的延長線上,P與直線CD相切時,OP2PH4cm,

∴點P運動的距離為6+410,

P運動的時間是10秒,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2x軸、y軸分別交于點A、B,過點C2,﹣1)作直線ly軸,點M為直線l上的一個動點,以點M為圓心,MO為半徑作圓,當M與直線AB相切時,點M的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點M(﹣2,﹣1),且P(﹣1,﹣2)為雙曲線上的一點,Q為坐標平面上一動點,PA垂直于x軸,QB垂直于y軸,垂足分別是A、B

1)寫出正比例函數(shù)和反比例函數(shù)的關系式;

2)當點Q在直線MO上運動時,直線MO上是否存在這樣的點Q,使得OBQOAP面積相等?如果存在,請求出點的坐標,如果不存在,請說明理由;

3)如圖2,當點Q在第一象限中的雙曲線上運動時,作以OP、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線ACBD交于點O,且ACBC,點EBC延長線上一點, ,連接DE.

(1)求證:四邊形ACED為矩形;

(2)連接OE,如果BD=10,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形ABCD中,,,AD=CD,對角線AC,BD相交于點O,且BD平分∠ABC,過點A,垂足為H.

(1)求證:;

(2)判斷線段BHDH,BC之間的數(shù)量關系;并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角ABC中,∠BAC=90°,DBC上,連接AD,作BFAD分別交ADE,交ACF

1)如圖(1),若BD=BA,求證:∠BAD=C+CAD;

2)如圖(2),若 BD=4DC,取AB 的中點G,連接CGADM,求證:①GM=2MC;②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2-2x-3的頂點為A,x軸于B,D兩點,y軸交于點C.

(1)求線段BD的長;

(2)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為提倡居民節(jié)約用水,規(guī)定每三口之家每月用水量不得超過20噸,超過部分需加價收費.已知小麗家有三口人,今年4月份用水24噸,交水費46元;5月份用水29噸,交水費58.5元.你能知道該市在限定量以內(nèi)的水費每噸多少元,超過部分的水費每噸多少元嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象過格點(網(wǎng)格線的交點)

1)求反比例函數(shù)的解析式;

2)若點是該雙曲線第一象限上的一點,且,

填空:①直線的解析式為_______;②點的坐標為______

查看答案和解析>>

同步練習冊答案