【題目】如圖是我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,圖中四個直角三角形是全等的,若大正方形ABCD的面積是小正方形EFGH面積的13倍,則的值為______________.
【答案】
【解析】分析:設(shè)小正方形EFGH面積是a2,則大正方形ABCD的面積是13a2,則小正方形EFGH邊長是a,則大正方形ABCD的邊長是,設(shè)AE=DH=x,根據(jù)Rt△AED的勾股定理得出x的值,從而得出比值.
詳解:設(shè)小正方形EFGH面積是a2,則大正方形ABCD的面積是13a2,
∴小正方形EFGH邊長是a,則大正方形ABCD的邊長是,
∵圖中的四個直角三角形是全等的, ∴AE=DH, 設(shè)AE=DH=x,
在Rt△AED中,AD2=AE2+DE2, 即,解得:x1=2a,x2=-3a(舍去),
∴AE=2a,DE=3a, ∴tan∠ADE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點A,B分別在x軸,y軸上,點A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動一周,同時另一端點Q隨之在x軸的非負(fù)半軸上運(yùn)動,如果PQ=,那么當(dāng)點P運(yùn)動一周時,點Q運(yùn)動的總路程為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x-m)2-2a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點;
(2)設(shè)該函數(shù)的圖象的頂點為C,與x軸交于A,B兩點,當(dāng)△ABC是等腰直角三角形時,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,AC=a,BD=b,且 AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2,…,如此進(jìn)行下去,得到四邊形AnBnCnDn.下列結(jié)論正確的有( )
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是
④四邊形AnBnCnDn的面積是
A. ①②③ B. ②③④ C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△AOB的直角邊OA在x軸正半軸上,OB在y軸負(fù)半軸上,且OA=,OB=1,以點B為頂點的拋物線經(jīng)過點A.
(1)求出該拋物線的解析式.
(2)第二象限內(nèi)的點M,是經(jīng)過原點且平分Rt△AOB面積的直線上一點.若OM=2,請判斷點M是否在(1)中的拋物線上?并說明理由.
(3)點P是經(jīng)過點B且與坐標(biāo)軸不平行的直線l上一點.請你探究:當(dāng)直線l繞點B任意旋轉(zhuǎn)(不與坐標(biāo)軸平行或重合)時,是否存在這樣的直線l,在直線l上能找到點P,使△PAB與Rt△AOB相似(相似比不為1)?若存在,求出直線l的解析式;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,明亮同學(xué)在點A處測得大樹頂端C的仰角為36°,斜坡AB的坡角為30°,沿在同一剖面的斜坡AB行走16米至坡頂B處,然后再沿水平方向行走6.4米至大樹腳底點D處,那么大樹CD的高度約為多少米?)(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,≈1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體院要了解籃球?qū)I(yè)學(xué)生投籃的命中率,對學(xué)生進(jìn)行定點投籃測試,規(guī)定每人投籃20次,測試結(jié)束后隨機(jī)抽查了一部分學(xué)生投中的次數(shù),并分為五類,Ⅰ:投中11次;Ⅱ投中12次;Ⅲ:投中13次;Ⅳ:投中14次;Ⅴ:投中15次.根據(jù)調(diào)查結(jié)果繪制了下面尚不完整的統(tǒng)計圖1、圖2:
回答下列問題:
(1)本次抽查了 名學(xué)生,圖2中的m= .
(2)補(bǔ)全條形統(tǒng)計圖,并指出中位數(shù)在哪一類.
(3)求最高的命中率及命中最高的人數(shù)所占的百分比.
(4)若體院規(guī)定籃球?qū)I(yè)學(xué)生定點投籃命中率不低于65%記作合格,估計該院籃球?qū)I(yè)210名學(xué)生中約有多少人不合格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,小格的頂點叫做格點,連接任意兩個格點的線段叫做格點線段。
(1)如圖1,格點線段AB、CD,請?zhí)砑右粭l格點線段EF,使它們構(gòu)成軸對稱圖形;
(2)如圖2,格點線段AB和格點C,在網(wǎng)格中找一格點D,使格點A、B、C、D四點構(gòu)成中心對稱圖形;
(3)在(2)的條件下,如果每一小正方形邊長為1,那么四邊形ABCD的面積S為_________.
(請直接填寫)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線 (x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE= CB,AF= AB,且四邊形OEBF的面積為2,則k的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com