【題目】如圖,在ABC中,BE平分ABC交AC于點E,過點E作EDBC交AB于點D.

(1)求證:AEBC=BDAC;

(2)如果=3,=2,DE=6,求BC的長.

【答案】(1)證明詳見解析;(2)10.

【解析】

試題分析:(1)由BE平分ABC交AC于點E,EDBC,可證得BD=DE,ADE∽△ABC,然后由相似三角形的對應(yīng)邊成比例,證得AEBC=BDAC;

(2)根據(jù)三角形面積公式與=3,=2,可得AD:BD=3:2,然后由平行線分線段成比例定理,求得BC的長.

試題解析:(1)BE平分ABC,

∴∠ABE=CBE,

DEBC,

∴∠DEB=CBE

∴∠ABE=DEB,

BD=DE,

DEBC,

∴△ADE∽△ABC,

,

AEBC=BDAC;

(2)解:設(shè)ABE中邊AB上的高為h,

=,

DEBC,

,

BC=10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,已知拋物線軸交于兩點,與軸交于點,頂點坐標(biāo)為點

1)求此拋物線的解析式;

2)點為拋物線對稱軸上一點,當(dāng)最小時,求點坐標(biāo);

3)在第一象限的拋物線上有一點,當(dāng)面積最大時,求點坐標(biāo);

4)在軸下方拋物線上有一點面積為6,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為平行四邊形的邊上一動點,過點作直線垂直于,且直線與平行四邊形的另一邊交于點.當(dāng)點勻速運(yùn)動時,設(shè)點的運(yùn)動時間為,的面積為,能大致反映函數(shù)關(guān)系的圖象是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B2,b)兩點,與y軸相交于點C

1)求mn的值;

2)若點D與點C關(guān)于x軸對稱,求△ABD的面積;

3)在坐標(biāo)軸上是否存在異于D點的點P,使得SPAB=SDAB?若存在,直接寫出P點坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC20cm,P、Q、M、N分別從AB、CD出發(fā)沿AD、BC、CB、DA方向在矩形的邊上同時運(yùn)動,當(dāng)有一個點先到達(dá)所在運(yùn)動邊的另一個端點時即停止.已知在相同時間內(nèi),若BQxcmx0),則AP2xcm,CM3xcmDNx2cm

(Ⅰ)當(dāng)x為何值時,APND長度相等?

(Ⅱ)當(dāng)x為何值時,以PQ、MN為兩邊,以矩形的邊(ADBC)的一部分為第三邊能構(gòu)成一個三角形?

(Ⅲ)當(dāng)x為何值時,以P、Q、M、N為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、F是邊長為4的正方形ABCDADAB上的動點,且AFDE,BECF于點P,在點E、F運(yùn)動的過程中,PA的最小值為( 。

A.2B.2C.42D.22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓內(nèi)接正三角形、正方形、正六邊形的邊長之比為(  )

A.123B.1C.1D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根.

(1)的取值范圍;

(2)為正整數(shù),且該方程的兩個根都是整數(shù),求的值并求出方程的兩個整數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習(xí)冊答案