【題目】如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD、BC、CB、DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí)即停止.已知在相同時(shí)間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(Ⅰ)當(dāng)x為何值時(shí),AP、ND長(zhǎng)度相等?
(Ⅱ)當(dāng)x為何值時(shí),以PQ、MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構(gòu)成一個(gè)三角形?
(Ⅲ)當(dāng)x為何值時(shí),以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形?
【答案】(Ⅰ)當(dāng)x為2時(shí),AP、ND長(zhǎng)度相等;(Ⅱ)當(dāng)x為時(shí),以PQ、MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構(gòu)成一個(gè)三角形;(Ⅲ)當(dāng)x=2或x=4時(shí),以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形.
【解析】
(Ⅰ)由題意得出方程,解方程即可;
(Ⅱ)分點(diǎn)P與點(diǎn)N重合或點(diǎn)Q與點(diǎn)M重合兩種情況,由題意得出方程,解方程即可;
(Ⅲ) 把P、N兩點(diǎn)分兩種情況討論,點(diǎn)P在點(diǎn)N的左側(cè)或點(diǎn)P在點(diǎn)N的右側(cè),進(jìn)一步利用平行四邊形的性質(zhì)聯(lián)立方程解答即可.
(Ⅰ)∵,
∴AP=ND時(shí),即,
解得:或(舍去),
∴當(dāng)為2時(shí),AP、ND長(zhǎng)度相等;
(Ⅱ)當(dāng)點(diǎn)P與點(diǎn)N重合或點(diǎn)Q與點(diǎn)M重合時(shí),以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊可能構(gòu)成一個(gè)三角形,
①當(dāng)點(diǎn)P與點(diǎn)N重合時(shí),
由題意得:,
解得: (舍去),
∵,此時(shí)點(diǎn)Q與點(diǎn)M不重合,
∴符合題意;
②當(dāng)點(diǎn)Q與點(diǎn)M重合時(shí),
由題意得:,
解得:,
此時(shí),不符合題意,
∴點(diǎn)Q與點(diǎn)M不能重合.
綜上所述,所求的值為:;
(Ⅲ)∵當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),,此時(shí)M點(diǎn)和Q點(diǎn)還未相遇,
∴點(diǎn)Q只能在點(diǎn)M的左側(cè),
①當(dāng)點(diǎn)P在點(diǎn)N的左側(cè)時(shí),如圖1所示:
由題意得:,
解得: (舍去),,
當(dāng)時(shí)四邊形PQMN是平行四邊形;
②當(dāng)點(diǎn)P在點(diǎn)N的右側(cè)時(shí),如圖2所示:
由題意得:,
解得:(舍去),,
當(dāng)時(shí),四邊形NQMP是平行四邊形;
綜上所述,當(dāng)或時(shí),以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副三角板按如圖所示疊放在一起,若固定△AOB,將△ACD繞著公共頂點(diǎn)A,按順時(shí)針?lè)较蛐D(zhuǎn)α度(0°<α<180°),當(dāng)△ACD的一邊與△AOB的某一邊平行時(shí),相應(yīng)的旋轉(zhuǎn)角α的值是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是的平均數(shù),即,則方差,它反映了這組數(shù)的波動(dòng)性,
(1)證明:對(duì)任意實(shí)數(shù)a,x1a,x2a,…,xna,與x1,x2,…,xn 方差相同;
(2)證明;
(3)以下是我校初三(1)班 10 位同學(xué)的身高(單位:厘米):
169,172,163,173,175,168,170,167,170,171,計(jì)算這組數(shù)的方差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到線段AF,CF、BA的延長(zhǎng)線交于點(diǎn)E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作ED∥BC交AB于點(diǎn)D.
(1)求證:AEBC=BDAC;
(2)如果=3,=2,DE=6,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖中,每個(gè)正方形有邊長(zhǎng)為1 的小正方形組成:
(1) 觀察圖形,請(qǐng)?zhí)顚懴铝斜砀瘢?/span>
正方形邊長(zhǎng) | 1 | 3 | 5 | 7 | … | n(奇數(shù)) |
黑色小正方形個(gè)數(shù) | … | |||||
正方形邊長(zhǎng) | 2 | 4 | 6 | 8 | … | n(偶數(shù)) |
黑色小正方形個(gè)數(shù) | … |
(2)在邊長(zhǎng)為n(n≥1)的正方形中,設(shè)黑色小正方形的個(gè)數(shù)為P1,白色小正方形的個(gè)數(shù)為P2,問(wèn)是否存在偶數(shù)n,使P2=5P1?若存在,請(qǐng)寫出n的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:△ABC在正方形網(wǎng)格中.
(1)請(qǐng)畫出△ABC繞著O逆時(shí)針旋轉(zhuǎn)90°后得到的△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于點(diǎn)O對(duì)稱的△A2B2C2;
(3)在直線MN上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫出△PAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com