【題目】如圖,點為平行四邊形的邊上一動點,過點作直線垂直于,且直線與平行四邊形的另一邊交于點.當(dāng)點勻速運動時,設(shè)點的運動時間為,的面積為,能大致反映函數(shù)關(guān)系的圖象是(

A.B.

C.D.

【答案】C

【解析】

當(dāng)點NAD上時,可得前半段函數(shù)圖象為開口向上的拋物線的一部分;當(dāng)點NDC上時,MN長度不變,可得后半段函數(shù)圖象為一條線段.

設(shè)∠A,點M運動的速度為a,則AMat

當(dāng)點NAD上時,MNtan×AMtanat,

此時S×at×tanattan×a2t2,

∴前半段函數(shù)圖象為開口向上的拋物線的一部分,

當(dāng)點NDC上時,MN長度不變,

此時S×at×MNa×MN×t,

∴后半段函數(shù)圖象為一條線段,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于、兩點,過兩點分別作軸的垂線,垂足分別為點,連接,則四邊形的面積為(  )

A.4B.8C.12D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AB是⊙O的直徑,AC交⊙OG,EAG上一點,D為△BCE內(nèi)心,BEADF,且∠DBE=BAD.

(1)求證:BC是⊙O的切線;

(2)求證:DF=DG;

(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②ADBD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進(jìn)行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達(dá)標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中課前預(yù)習(xí)不達(dá)標(biāo)對應(yīng)的圓心角度數(shù)是   

3)為了共同進(jìn)步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的平均數(shù),即,則方差,它反映了這組數(shù)的波動性,

1)證明:對任意實數(shù)a,x1a,x2a,xna,與x1,x2,xn 方差相同;

2)證明;

3)以下是我校初三(1)班 10 位同學(xué)的身高(單位:厘米):

169172,163173,175168,170,167170,171,計算這組數(shù)的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一張長方形紙片(其中ABCD),點E,F分別在邊ABAD上.把這張長方形紙片沿著EF折疊,點A落在點G處,EGCD于點H.若∠BEH4AEF,則∠CHG的度數(shù)為( 。

A.108°B.120°C.136°D.144°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-1,0),B3,0)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標(biāo)為m0m3),連接CD,BDBC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BE平分ABC交AC于點E,過點E作EDBC交AB于點D.

(1)求證:AEBC=BDAC;

(2)如果=3,=2,DE=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB12C是線段AB上一點,分別以AC、CB為邊在A的同側(cè)作等邊△ACP和等邊△CBQ,連接PQ,則PQ的最小值是(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

同步練習(xí)冊答案