【題目】如圖,AC⊥BC,AC=BC=2,以AC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作⊙C,過(guò)點(diǎn)OBC的平行線交兩弧于點(diǎn)D、E,則陰影部分的面積是______

【答案】

【解析】

如圖,圖中S陰影=S扇形ACB-S扇形AOD-S扇形ECB-SOCE.根據(jù)已知條件易求得OA=OC=OD=2BC=CE=4∠ECB=∠OEC=30°,所以由扇形面積公式、三角形面積公式進(jìn)行解答即可.

如圖,連接CE

∵AC⊥BC,AC=BC=2,以AC為直徑作半圓,圓心為點(diǎn)O;

以點(diǎn)C為圓心,BC為半徑作,

∴∠ACB=90°,OA=OC=OD=1,BC=CE=2

∵OE∥BC,

∴∠AOE=∠COE=90°

在直角△OEC中,OC=CE,

∴∠OEC=30°OE=

∴∠ECB=∠OEC=30°,

∴S陰影=S扇形ACB-S扇形AOD-S扇形ECB-SOCE

=---×1×

=π-

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是菱形ABCD的對(duì)角線.

1)請(qǐng)用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫(xiě)作法,保留作圖痕跡)

2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)BC,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414,≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACB=90°AC=BC,P為△ABC內(nèi)部一點(diǎn),且∠APB=BPC=135°

1)求證:△PAB∽△PBC

2)求證:PA=2PC

3)若點(diǎn)P到三角形的邊AB,BC,CA的距離分別為h1,h2h3,求證h12=h2·h3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購(gòu)置一批電子白板和一批筆記本電腦,經(jīng)投標(biāo),購(gòu)買(mǎi)1塊電子白板比買(mǎi)3臺(tái)筆記本電腦多3000元,購(gòu)買(mǎi)4塊電子白板和5臺(tái)筆記本電腦共需80000元.

(1)求購(gòu)買(mǎi)1塊電子白板和一臺(tái)筆記本電腦各需多少元?

(2)根據(jù)該校實(shí)際情況,需購(gòu)買(mǎi)電子白板和筆記本電腦的總數(shù)為396,要求購(gòu)買(mǎi)的總費(fèi)用不超過(guò)2700000元,并購(gòu)買(mǎi)筆記本電腦的臺(tái)數(shù)不超過(guò)購(gòu)買(mǎi)電子白板數(shù)量的3倍,該校有哪幾種購(gòu)買(mǎi)方案?

(3)上面的哪種購(gòu)買(mǎi)方案最省錢(qián)?按最省錢(qián)方案購(gòu)買(mǎi)需要多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1000元,求商場(chǎng)共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字01,2,乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,3,現(xiàn)從甲袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為x,再?gòu)囊掖腥我饷鲆粋(gè)小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(xy).

1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,寫(xiě)出點(diǎn)M的所有可能的坐標(biāo);

2)求點(diǎn)Mx,y)在函數(shù)y=﹣的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是⊙的直徑,點(diǎn)分別在兩個(gè)半圓上(不與點(diǎn)重合),的長(zhǎng)分別是關(guān)于的方程的兩個(gè)實(shí)數(shù)根.

(1)的值為_____;

(2)連接三者之間的等量關(guān)系為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案