【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414,≈1.732)
【答案】52.7m
【解析】
如圖,過點(diǎn)D作DF⊥AB于點(diǎn)F,過點(diǎn)C作CH⊥DF于點(diǎn)H.通過解直角△AFD得到DF的長度;通過解直角△DCE得到CE的長度,則BC=BE-CE.
解:如圖,過點(diǎn)D作DF⊥AB于點(diǎn)F,過點(diǎn)C作CH⊥DF于點(diǎn)H.
則DE=BF=CH=10m,
在直角△ADF中,∵AF=80m-10m=70m,∠ADF=45°,
∴DF=AF=70m.
在直角△CDE中,∵DE=10m,∠DCE=30°,
∴CE===10(m),
∴BC=BE-CE=70-10≈70-17.32≈52.7(m).
答:障礙物B,C兩點(diǎn)間的距離約為52.7m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李師傅駕車從甲地到乙地,途中在加油站加了一次油,加油時(shí),車載電腦顯示油箱中剩余油量4升,已知汽車行駛時(shí),每小時(shí)耗油量一定,設(shè)油箱中剩余油量為(升),汽車行駛時(shí)間為(時(shí)),與之間的函數(shù)圖像如圖所示.
(1)求李師傅加油前與之間的函數(shù)關(guān)系式;
(2)求的值;
(3)李師傅在加油站的加油量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、D為⊙O上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】社區(qū)利用一塊矩形空地建了一個(gè)小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設(shè)計(jì)為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.
(1)求通道的寬是多少米?
(2)該停車場共有車位64個(gè),據(jù)調(diào)查分析,當(dāng)每個(gè)車位的月租金為200元時(shí),可全部租出;當(dāng)每個(gè)車位的月租金每上漲10元,就會少租出1個(gè)車位.當(dāng)每個(gè)車位的月租金上漲多少元時(shí),停車場的月租金收入為14400元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM是⊙O直徑,弦BC⊥AM,垂足為點(diǎn)N,弦CD交AM于點(diǎn)E,連按AB和BE.
(1)如圖1,若CD⊥AB,垂足為點(diǎn)F,求證:∠BED=2∠BAM;
(2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE=2CN;
(3)如圖3,AB=CD,BE:CD=4:7,AE=11,求EM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與y軸交于C點(diǎn),交x軸于點(diǎn)A(-2,0),B(6,0),P是該函數(shù)在第一象限內(nèi)圖象上的動點(diǎn),過點(diǎn)P作PQ⊥BC于點(diǎn)Q,連接PC,AC.
(1)求該二次函數(shù)的表達(dá)式;
(2)求線段PQ的最大值;
(3)是否存在點(diǎn)P,使得以點(diǎn)P,C,Q為頂點(diǎn)的三角形與△ACO相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)到直線的距離即為點(diǎn)到直線的垂線段的長.
(1)如圖1,取點(diǎn)M(1,0),則點(diǎn)M到直線l:y=x﹣1的距離為多少?
(2)如圖2,點(diǎn)P是反比例函數(shù)y=在第一象限上的一個(gè)點(diǎn),過點(diǎn)P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點(diǎn)P,使d0=?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點(diǎn)A、B(A在B的左邊).且∠AOB=90°,求點(diǎn)P(2,0)到直線y=kx+m的距離最大時(shí),直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點(diǎn)E,F分別在邊BC,AD上,BE=DF,∠AEC=90°.
(1)求證:四邊形AECF是矩形;
(2)連接BF,若AB=4,∠ABC=60°,BF平分∠ABC,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級學(xué)生參加社會實(shí)踐活動情況,隨機(jī)調(diào)查了本校部分八年級學(xué)生在第一學(xué)期參加社會實(shí)踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的的值為 ;
(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)若該校八年級學(xué)生有人,估計(jì)參加社會實(shí)踐活動時(shí)間大于天的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com