【題目】如圖,AB是O的直徑,OD弦BC于點F,交O于點E,連結CE、AE、CD,若AEC=ODC.

(1)求證:直線CD為O的切線;

(2)若AB=5,BC=4,求線段CD的長.

【答案】(1)詳見解析;(2)DC=

【解析】

試題分析:(1)利用圓周角定理結合等腰三角形的性質得出OCF+DCB=90°,即可得出答案;(2)利用圓周角定理得出ACB=90°,利用相似三角形的判定與性質得出DC的長.

試題解析:(1)證明:連接OC,

∵∠CEA=CBA,AEC=ODC,

∴∠CBA=ODC,

∵∠CFD=BFO,

∴∠DCB=BOF,

CO=BO,

∴∠OCF=B,

∵∠B+BOF=90°,

∴∠OCF+DCB=90°,

直線CD為O的切線;

(2)解:連接AC,

AB是O的直徑,

∴∠ACB=90°,

∴∠DCO=ACB,

∵∠D=B

∴△OCD∽△ACB,

∵∠ACB=90°,AB=5,BC=4,

AC=3,

,

,

解得DC=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,過點O作OE⊥AC交AB于E,若BC=4,△AOE的面積為5,則sin∠BOE的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品共用了160元.

(1)求A,B兩種商品每件多少元?

(2)如果小亮準備購買A,B兩種商品共10件,總費用不超過350元,且不低于300元,問有幾種購買方案,哪種方案費用最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果△ABC的兩邊長分別為3和5,那么連結△ABC三邊中點D、E、F所得的△DEF的周長可能是(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家電信公司提供兩種手機的月通話收費方式供用戶選擇,其中一種有月租費,另一種無月租費.這兩種收費方式的通話費用y(元)與通話時間x(分鐘)之間的函數(shù)關系如圖所示.小紅根據(jù)圖象得出下列結論:

l1描述的是無月租費的收費方式;
l2描述的是有月租費的收費方式;
③當每月的通話時間為500分鐘時,選擇有月租費的收費方式省錢.
其中,正確結論的個數(shù)是(  ).
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知梯形的上底長為a , 中位線長為m , 那么這個梯形的下底長為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P(x,y)滿足|x+2|+(2y﹣x﹣1)2=0,則P到y(tǒng)軸的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2x+2(a0)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).

(1)求拋物線與直線AC的函數(shù)解析式;

(2)若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數(shù)關系;

(3)若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出滿足條件的所有點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中計算正確的是( 。.
A.33=
B.a﹣5=﹣a5
C.(﹣3a32=9a6
D.a5+a3=a8

查看答案和解析>>

同步練習冊答案