【題目】點(diǎn)P(x,y)滿足|x+2|+(2y﹣x﹣1)2=0,則P到y(tǒng)軸的距離是

【答案】2
【解析】解:∵|x+2|+(2y﹣x﹣1)2=0,
∴x+2=0,2y﹣x﹣1=0,
∴x=﹣2,
∴P到y(tǒng)軸的距離是2,
所以答案是:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假期顧老師帶學(xué)生乘車外出旅游,在乘車單價(jià)相同的情況下,甲、乙兩位車主給出了不同的優(yōu)惠方案.甲車主說“每人八折”,乙車主說“學(xué)生九折,老師免費(fèi)”.李老師計(jì)算了一下,無論坐誰的車,費(fèi)用都一樣,則李老師帶的學(xué)生為 ( )

A. 10 B. 9 C. 8 D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為(

A. B.2 C. D.10﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,OD弦BC于點(diǎn)F,交O于點(diǎn)E,連結(jié)CE、AE、CD,若AEC=ODC.

(1)求證:直線CD為O的切線;

(2)若AB=5,BC=4,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地鐵1號線是重慶軌道交通線網(wǎng)東西方向的主干線,也是貫穿中區(qū)和沙坪壩區(qū)的重要交通通道,它的開通極大地方便了市民的出行,現(xiàn)某同學(xué)要從沙坪壩南開中學(xué)到兩路口,他先勻速步行至沙坪壩地鐵站,等了一會,然后搭乘一號線地鐵直達(dá)兩路口(忽略途中停靠站的時(shí)間).在此過程中,他離南開中學(xué)的距離y與時(shí)間x的函數(shù)關(guān)系的大致圖象是( 。.
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).
(1)如圖1,直接寫出∠EAF、∠AED、∠EDG之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E在FG延長線上時(shí),求證:∠EAF=∠AED+∠EDG;
(3)如圖3,AI平分∠BAE,DI交AI于點(diǎn)I,交AE于點(diǎn)K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD,ABEF,則CD_______EF,其理由是_______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)五個(gè)整數(shù)從小到大排列后,其中位數(shù)是4,如果這組數(shù)據(jù)的唯一眾數(shù)是6,那么這組數(shù)據(jù)可能的最大的和是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①35=3×3×3×3×3;②﹣1是單項(xiàng)式,且它的次數(shù)為1;③若∠1=90°﹣∠2,則∠1與∠2互為余角;④對于有理數(shù)n、x、y(其中xy≠0),若 = ,則x=y.其中不正確的有(
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

查看答案和解析>>

同步練習(xí)冊答案