【題目】如圖,已知正方形ABCD的對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是OB,OC上的動(dòng)點(diǎn).當(dāng)動(dòng)點(diǎn)E,F(xiàn)滿足BE=CF時(shí).

(1)寫出所有以點(diǎn)EF為頂點(diǎn)的全等三角形;(不得添加輔助線)

(2)求證:AEBF.

【答案】(1)ABE≌△BCF,AOE≌△BOF,ADE≌△BAF;(2)見解析

【解析】試題分析

(1)由已知條件易得AB=BC,∠ABE=∠CBF=45°,結(jié)合BE=CF可得△ABE≌△BCF;由此可得∠AEB=∠CFB,從而可得∠AEO=∠BFO,結(jié)合∠AOE=∠BOF=90°OA=OB可得△AOE≌△BOF;由∠ADE=∠BAF=45°,∠AED=∠BFA結(jié)合AD=AB即可得到△ADE≌△BAF;

(2)延長(zhǎng)AEBF于點(diǎn)M,由△ABE≌△BCF,可得∠BAE=∠CBF,結(jié)合∠CBF+∠ABF=90°可得∠BAE+∠ABM=90°,從而可得∠AMB=90°,由此即可得到AE⊥BF.

試題解析:

(1)由題意可得:

圖中以點(diǎn)EF為頂點(diǎn)的全等三角形有:△ABE≌△BCF,△AOE≌△BOF,△ADE≌△BAF;

(2)延長(zhǎng)AEBF于點(diǎn)M,

ABE≌△BCF,

∴∠BAE=CBF,

∵∠CBF+ABF=90°,

∴∠BAE+ABF=90°,

∴∠AMB=90°,

AEBF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10),B(0,3),直線BC交坐標(biāo)軸于B,C兩點(diǎn),且∠CBA45° 求直線BC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于長(zhǎng)為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)

2AEBF相交于點(diǎn)O,若四邊形ABEF的周長(zhǎng)為40BF=10,則AE的長(zhǎng)為________,∠ABC=________°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,且頂點(diǎn)在直線x= 上.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過點(diǎn)M作∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有
①∠A+∠B=90°
②AB2=AC2+BC2

④CD2=ADBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)均勻的立方體六個(gè)面上分別標(biāo)有數(shù)1,2,3,4,5,6.如圖是這個(gè)立方體表面的展開圖.拋擲這個(gè)立方體,則朝上一面上的數(shù)恰好等于朝下一面上的數(shù)的 的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情期間,為減少交叉感染,催生了以智能技術(shù)為支撐的無接觸服務(wù).某快遞公司準(zhǔn)備購(gòu)進(jìn),兩種型號(hào)的智能機(jī)器人送快遞.經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),型號(hào)機(jī)器人的單價(jià)比型號(hào)機(jī)器人貴600元,3臺(tái)型號(hào)機(jī)器人比2臺(tái)型號(hào)機(jī)器人貴1200元.

1)求,兩種型號(hào)機(jī)器人的單價(jià)各是多少元?

2)若該快遞公司準(zhǔn)備用不超過132000元購(gòu)進(jìn),兩種型號(hào)機(jī)器人共50臺(tái),請(qǐng)問該快遞公司最多可購(gòu)進(jìn)型號(hào)機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠A=90°, DAB邊上一點(diǎn),且DB=DC,過BC上一點(diǎn)P(不包括B,C二點(diǎn))作PEAB,垂足為點(diǎn)E, PFCD,垂足為點(diǎn)F,已知ADDB=14BC= ,求PE+PF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案