【題目】一個均勻的立方體六個面上分別標(biāo)有數(shù)1,2,3,4,5,6.如圖是這個立方體表面的展開圖.拋擲這個立方體,則朝上一面上的數(shù)恰好等于朝下一面上的數(shù)的 的概率是

【答案】
【解析】解:由分析知:3朝上時,朝上一面上的數(shù)恰好等于朝下一面上的數(shù)的 ;但1、2、3、4、5、6都有可能朝上,

所以朝上一面上的數(shù)恰好等于朝下一面上的數(shù)的 的概率

所以答案是

【考點精析】解答此題的關(guān)鍵在于理解幾何體的展開圖的相關(guān)知識,掌握沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖,以及對隨機事件的理解,了解在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于S的隨機事件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,∠ACB=90°,且AC=1.過點C作直線l∥AB,P為直線l上一點,且AP=AB.則點P到BC所在直線的距離是( )
A.1
B.1或
C.1或
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,ABDB,∠ABD的平分線BEAD于點E,∠CDB的平分線DFBC于點F.求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線AC,BD交于點O,點E,F(xiàn)分別是OB,OC上的動點.當(dāng)動點E,F(xiàn)滿足BE=CF時.

(1)寫出所有以點EF為頂點的全等三角形;(不得添加輔助線)

(2)求證:AEBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點E1 , 作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1 , 它的面積記作S2 , 照此規(guī)律作下去,則S1= , S2017=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=4x與反比例函數(shù)y= (k≠0)相交與點A(1,a),B是反比例函數(shù)圖象上一點,直線OB與x軸的夾角為α,且tanα=

(1)求k的值.
(2)求點B的坐標(biāo).
(3)設(shè)點P點在y軸上,若△PAB是以AB為直角邊的直角三角形,則點P的坐標(biāo)為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點,以CD為一邊且在CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE;

(2)延長BE至Q,P為BQ上一點,連接CP、CQ使CP=CQ=5,若BC=8時,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知∠A=60°,∠ABC的平分線BD與∠ACB的平分線CE相交于點O,∠BOC的平分線交BCF,有下列結(jié)論:①∠BOE=60°,②∠ABD=ACE,③OE=OD,④BC=BE+CD。其中正確的是_________。(把所有正確結(jié)論的序號都選上)

查看答案和解析>>

同步練習(xí)冊答案