【題目】疫情期間,為減少交叉感染,催生了以智能技術(shù)為支撐的無(wú)接觸服務(wù).某快遞公司準(zhǔn)備購(gòu)進(jìn)兩種型號(hào)的智能機(jī)器人送快遞.經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),型號(hào)機(jī)器人的單價(jià)比型號(hào)機(jī)器人貴600元,3臺(tái)型號(hào)機(jī)器人比2臺(tái)型號(hào)機(jī)器人貴1200元.

1)求,兩種型號(hào)機(jī)器人的單價(jià)各是多少元?

2)若該快遞公司準(zhǔn)備用不超過(guò)132000元購(gòu)進(jìn),兩種型號(hào)機(jī)器人共50臺(tái),請(qǐng)問(wèn)該快遞公司最多可購(gòu)進(jìn)型號(hào)機(jī)器人多少臺(tái)?

【答案】1,兩種型號(hào)機(jī)器人的單價(jià)分別是3000元,2400元;(2)該快遞公司最多可購(gòu)進(jìn)型號(hào)機(jī)器人20臺(tái)

【解析】

1)設(shè)型號(hào)機(jī)器人單價(jià)為元,型號(hào)機(jī)器人單價(jià)為元,列方程組解答;

2)(2)設(shè)該快遞公司購(gòu)進(jìn)型號(hào)機(jī)器人臺(tái),依據(jù)費(fèi)用不超過(guò)132000元列不等式求出答案.

解:(1)設(shè)型號(hào)機(jī)器人單價(jià)為元,型號(hào)機(jī)器人單價(jià)為元,

根據(jù)題意,有

解這個(gè)方程組,得

答:,兩種型號(hào)機(jī)器人的單價(jià)分別是3000元,2400元.

2)設(shè)該快遞公司購(gòu)進(jìn)型號(hào)機(jī)器人臺(tái),根據(jù)題意,有

解這個(gè)不等式,得

答:該快遞公司最多可購(gòu)進(jìn)型號(hào)機(jī)器人20臺(tái).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y= 的圖象,當(dāng)x取1,2,3,…n時(shí),對(duì)應(yīng)在反比例圖象上的點(diǎn)分別為M1、M2、M3…Mn , 則 + +… =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是OB,OC上的動(dòng)點(diǎn).當(dāng)動(dòng)點(diǎn)E,F(xiàn)滿足BE=CF時(shí).

(1)寫出所有以點(diǎn)EF為頂點(diǎn)的全等三角形;(不得添加輔助線)

(2)求證:AEBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點(diǎn)E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點(diǎn)E1 , 作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1 , 它的面積記作S2 , 照此規(guī)律作下去,則S1= , S2017=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=4x與反比例函數(shù)y= (k≠0)相交與點(diǎn)A(1,a),B是反比例函數(shù)圖象上一點(diǎn),直線OB與x軸的夾角為α,且tanα=

(1)求k的值.
(2)求點(diǎn)B的坐標(biāo).
(3)設(shè)點(diǎn)P點(diǎn)在y軸上,若△PAB是以AB為直角邊的直角三角形,則點(diǎn)P的坐標(biāo)為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,DAB邊上一點(diǎn),以CD為邊作等邊CDE,使點(diǎn)E、A在直線DC的同側(cè),連接AE,判斷AEBC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點(diǎn),以CD為一邊且在CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE;

(2)延長(zhǎng)BE至Q,P為BQ上一點(diǎn),連接CP、CQ使CP=CQ=5,若BC=8時(shí),求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一架梯子AC長(zhǎng)2.5米,斜靠在一面墻上,梯子底端離墻0.7米.

(1)這個(gè)梯子的頂端距地面有多高?

(2)如果梯子的頂端下滑了0.4米到A′,那么梯子的底端在水平方向滑動(dòng)了幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l1:y=k1x+4與直線l2:y=k2x﹣5交于點(diǎn)A,它們與y軸的交點(diǎn)分別為點(diǎn)B,C,點(diǎn)E,F(xiàn)分別為線段AB、AC的中點(diǎn),則線段EF的長(zhǎng)度為

查看答案和解析>>

同步練習(xí)冊(cè)答案