【題目】已知:在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+3x軸于點B,交y軸于點A,過點AACABx軸于點C

1)如圖1,求直線AC的解析式;

2)如圖2,點PAO的延長線上,點QAC上,連接PB,PQ,且PQPB,設(shè)點P的縱坐標(biāo)為t,AQ的長為d,求dt之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)如圖3,在(2)的條件下,PQx軸于點D,延長PQBA的延長線于點E,過點EEFPEy軸于點F,若DEEF,求點Q的坐標(biāo).

【答案】(1)AC的解析式為yx+3;(2d=﹣t;(3)(﹣1,2

【解析】

1)先根據(jù)直線求出點A、B的坐標(biāo),從而可得OAOB的長,再根據(jù)等腰直角三角形的判定與性質(zhì)得出OC的長,從而可得點C的坐標(biāo),然后利用待定系數(shù)法求解即可;

2)先求出點P的坐標(biāo),再根據(jù)AQ的長、直線AC的解析式可求出點Q的坐標(biāo),然后根據(jù),利用兩點之間的距離公式建立等式求解即可;

3)如圖(見解析),先求出點Q的坐標(biāo),從而得出PN、QN的長,再根據(jù)正切三角形函數(shù)值、勾股定理得出DP的長和,然后利用待定系數(shù)法求出直線PQ的解析式,聯(lián)立直線AB的解析式求出點E的坐標(biāo),最后利用兩點之間的距離公式求出DE的長,代入求解即可.

1)∵x軸于點B,交y軸于點A

,則,解得

,則

設(shè)AC的解析式為

將點,代入得,解得

則直線AC的解析式為;

2)∵點PAO的延長線上,點P的縱坐標(biāo)為t

,

如圖,過點Q軸交于點M

AQ的長為

整理得

解得(舍去)

dt之間的函數(shù)關(guān)系式為;

3)如圖,過點Q軸交于點N,則

,

,即

,

設(shè)直線PQ的解析式為

將點代入得,解得

則直線PQ的解析式為

聯(lián)立,解得

由兩點之間的距離公式得:

DE、DP的值代入得:

整理得:

解得(不符題意,舍去)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊙O1和⊙O2相交于A、B兩點, O1經(jīng)過點O2,點C上運動(點C 不與A、B重合),AC的延長線交⊙O2P,連結(jié)AB、BC、BP;

1)按題意將圖形補充完整;

2)當(dāng)點C上運動時,圖中不變的角有 (將符合要求的角都寫上)

3)線段BC、PC的長度存在何種關(guān)系?寫出結(jié)論,并加以證明;

4)設(shè)⊙O1和⊙O2的半徑為,當(dāng),滿足什么條件時,為等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,對角線相交于點,且,.動點,分別從點同時出發(fā),運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續(xù)運動,到點停止.連接,,,設(shè)的面積為(這里規(guī)定:線段是面積為0的三角形),點的運動時間為

1)求線段的長(用含的代數(shù)式表示);

2)求時,求之間的函數(shù)解析式,并寫出的取值范圍;

3)當(dāng)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張卡片,除一面分別寫有數(shù)字22,36外,其余均相同,將卡片洗勻后,寫有數(shù)字的一面朝下扣在桌面上,隨機抽取一張卡片記下數(shù)字后放回,洗勻后仍將寫有數(shù)字的一面朝下扣在桌面上,再抽取一張.

1)用列表或畫樹狀圖的方法求兩次都恰好抽到2的概率;

2)小貝和小晶以此為游戲,游戲規(guī)則是:第一次抽取的數(shù)字作為十位,第二次抽取的數(shù)字作為個位,組成一個兩位數(shù),若組成的兩位數(shù)不小于32,小貝獲勝,否則小晶獲勝.你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,圖2分別是10×6的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,每個網(wǎng)格中畫有一個平行四邊形,請分別在圖1,圖2中各畫一條線段,各圖均滿足以下要求:

1)線段的一個端點為平行四邊形的頂點,另一個端點在平行四邊形一邊的格點上(每個小正方形的頂點均為格點);

2)將平行四邊形分割成兩個圖形,都要求其中一個是軸對稱圖形,圖1,圖2的分法不相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王輝在某景區(qū)經(jīng)營一個小攤位,他以10/根的價格購進一批登山杖,經(jīng)市場調(diào)查發(fā)現(xiàn)當(dāng)售價為24/根時,每天可出售156根,此后售價每增加5元,就會少售出30根.

1)求登山杖的單根售價(元)與銷售數(shù)量(根)之間的函數(shù)關(guān)系式;

2)若設(shè)王輝每天的日銷售利潤為元,求之間的函數(shù)關(guān)系式;

3)為了避免惡性競爭且保障商家獲得一定利潤,景區(qū)管理處規(guī)定登山杖的銷售單價不得低于32元且不高于36元,則王輝的日銷售利潤最大是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段的中點,交于點,且,,連,若,則____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點兩點,與軸交于點,點是拋物線上一個動點,設(shè)點的橫坐標(biāo)為.連接

1)求拋物線的函數(shù)表達式;

2)當(dāng)的面積等于的面積時,求的值;

3)當(dāng)時,若點軸正半軸上上的一個動點,點是拋物線上動點,試判斷是否存在這樣的點,使得以點為頂點的四邊形是平行四邊形.若存在,請直接寫出點的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點A,過點AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______

查看答案和解析>>

同步練習(xí)冊答案