【題目】王輝在某景區(qū)經(jīng)營一個小攤位,他以10/根的價格購進(jìn)一批登山杖,經(jīng)市場調(diào)查發(fā)現(xiàn)當(dāng)售價為24/根時,每天可出售156根,此后售價每增加5元,就會少售出30根.

1)求登山杖的單根售價(元)與銷售數(shù)量(根)之間的函數(shù)關(guān)系式;

2)若設(shè)王輝每天的日銷售利潤為元,求之間的函數(shù)關(guān)系式;

3)為了避免惡性競爭且保障商家獲得一定利潤,景區(qū)管理處規(guī)定登山杖的銷售單價不得低于32元且不高于36元,則王輝的日銷售利潤最大是多少元?

【答案】1y=-6x+300;(2W=-6+2400;(3)當(dāng)售價定為32元時,王輝的日銷售利潤最大,且最大利潤為2376元.

【解析】

1)根據(jù)銷售單價和銷售量之間的關(guān)系,列出函數(shù)關(guān)系式y=156-化簡即可;

2)根據(jù)日銷售利潤=單根利潤×數(shù)量,可得出函數(shù)關(guān)系式W=-6+2400,化簡整理即可;

3)由(2)中結(jié)論,利用二次函數(shù)的最值問題,結(jié)合單價的取值范圍,即可求出結(jié)果.

1)依據(jù)題意得,yx的函數(shù)關(guān)系式為:y=156-,

整理,得y=-6x+300,

答:所求y與x的函數(shù)關(guān)系式為:y=-6x+300,

故答案為:y=-6x+300

2)依據(jù)日銷售利潤=單根利潤×數(shù)量,得Wx的函數(shù)關(guān)系式為:W=x-10)(-6x+300),

整理得W=-6+2400,

答:日銷售利潤W和x的函數(shù)關(guān)系式為:W=-6+2400

故答案為:W=-6+2400;

3)∵W=-6+2400,a=-6<0

x>30,Wx的增加而減小,

∵銷售單價不得低于32元且不高于36元,

∴當(dāng)x=32時,W有最大值,且最大值為W=-6+2400=2376(元),

答:當(dāng)售價定為32元時,王輝的日銷售利潤最大,且最大利潤為2376元,

故答案為:2376

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

1)以AB邊上一點O為圓心作⊙O,使⊙O經(jīng)過點A,C;(保留作圖痕跡,不寫作法)

2)判斷點B與⊙O的位置關(guān)系是   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏參加答題游戲,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,,,第二道單選題有4個選項,,,這兩道題小敏都不會,不過小敏還有一個“求助”機(jī)會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設(shè)第一道題的正確選項是,第二道題的正確選項是,解答下列問題:

1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;

2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關(guān)的概率;

3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關(guān)的可能性更大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小魯在一個不透明的盒子里裝了5個除顏色外其他都相同的小球,其中有3個是紅球,2個是綠球,每次拿一個球然后放回去,拿2次,則至少有一次取到綠球的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+3x軸于點B,交y軸于點A,過點AACABx軸于點C

1)如圖1,求直線AC的解析式;

2)如圖2,點PAO的延長線上,點QAC上,連接PB,PQ,且PQPB,設(shè)點P的縱坐標(biāo)為t,AQ的長為d,求dt之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)如圖3,在(2)的條件下,PQx軸于點D,延長PQBA的延長線于點E,過點EEFPEy軸于點F,若DEEF,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰被某一條直線分成兩個等腰三角形,并且其中一個等腰三角形與原三角形相似,則等腰的頂角的度數(shù)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線ACBD交于點O,點EAD上,且DECD,連接OE,∠ABEACB,若AE2,則OE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠ABC的平分線交AC于點E,過點EBE的垂線交AB于點FO是△BEF的外接圓.

1)求證:ACO的切線;

2)過點EEHAB,垂足為H,若CD1,EH3,求BE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

同步練習(xí)冊答案