【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.

【答案】1;(2;(3)當t11秒或12秒或13.2秒時,△BCQ為等腰三角形

【解析】

1)根據(jù)點P、Q的運動速度求出AP,再求出BPBQ,用勾股定理求得PQ即可;

2)設出發(fā)t秒鐘后,PQB能形成等腰三角形,則BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;

3)當點Q在邊CA上運動時,能使BCQ成為等腰三角形的運動時間有三種情況:①當CQ=BQ時,則∠C=CBQ,可證明∠A=ABQ,則BQ=AQ,則CQ=AQ,從而求得t;②當CQ=BC時,則BC+CQ=24,易求得t;③當BC=BQ時,過B點作BEAC于點E,則求出BE,CE,即可得出t

1)當t=2BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,

PQ= = cm

(2)依題意得: BQ=2t ,BP=16-t

2t =16-t 解得:t=

即出發(fā)秒鐘后,PQB能形成等腰三角形;

(3) ①當CQ=BQ(如下圖),則∠C=CBQ,

∵∠ABC=90°

∴∠CBQ+ABQ=90°

A+C=90°

∴∠A=ABQ

BQ=AQ

CQ=AQ=10

BC+CQ=22

t=22÷2=11

②當CQ=BC時(如圖2),則BC+CQ=24

t=24÷2=12

③當BC=BQ時(如圖3),過B點作BEAC于點E,

BE= ,

CE=,

CQ=2CE=14.4,

所以BC+CQ=26.4

t=26.4÷2=13.2

由上可知,當t11秒或12秒或13.2秒時,BCQ為等腰三角形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+ca≠0)圖象的一部分,x=﹣1是對稱軸,有下列判斷:b﹣2a=04a﹣2b+c0;a﹣b+c=﹣9a若(﹣3,y1),(,y2)是拋物線上兩點,則y1y2,其中正確的是( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2axa-2=0.

(1)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;

(2)若該方程的一個根為1,求a的值及該方程的另一根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在河邊修建一個水泵站,分別向張村A和李莊B送水,已知張村A、李莊B到河邊的距離分別為2km7km,且張、李二村莊相距13km

1)水泵應建在什么地方,可使所用的水管最短?請在圖中設計出水泵站的位置.
2)如果鋪設水管的工程費用為每千米1500元,為使鋪設水管費用最節(jié)省,請求出最節(jié)省的鋪設水管的費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DRtABC的斜邊AB上,且AC=6,

(1) ABBC2,①求AB的長;②若CDAB于點D,CD的長.

(2)AD=7,DB=11, CDB=2B,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設可變成本平均每年增長的百分率為

1)用含x的代數(shù)式表示低3年的可變成本為 萬元;

2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,D為BC延長線上的一點,CE平分ACD,CE=BD,求證:ADE為等邊三角形.

查看答案和解析>>

同步練習冊答案