如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設直線x=t截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的( 。
A. B. C. D.
D【考點】二次函數(shù)的圖象.
【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.
【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD
=t2(0≤t≤3),即S=t2(0≤t≤3).
故S與t之間的函數(shù)關(guān)系的圖象應為定義域為[0,3]、開口向上的二次函數(shù)圖象;
故選D.
【點評】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征.
科目:初中數(shù)學 來源: 題型:
為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款.已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等,如果設第一次捐款人數(shù)是x人,那么x滿足的方程是( 。
A. B. =
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是( 。
A.(10π﹣)米2 B.(π﹣)米2 C.(6π﹣)米2 D.(6π﹣)米2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com