精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在中,,點DBC上,,過點D,垂足為E,經過A,BD三點.

求證:AB的直徑;

判斷DE的位置關系,并加以證明;

的半徑為10m,,求DE的長.

【答案】(1)證明見解析;(2)與圓O相切,理由見解析;(3)

【解析】

1)連接AD,由AB=AC,BD=CD,利用等腰三角形三線合一性質得到ADBC,利用90°的圓周角所對的弦為直徑即可得證;
2DE與圓O相切,理由為:連接OD,由O、D分別為AB、CB中點,利用中位線定理得到ODAC平行,利用兩直線平行內錯角相等得到∠ODE為直角,再由OD為半徑,即可得證;
3)由AB=AC,且∠BAC=60°,得到三角形ABC為等邊三角形,設AC交于點F,連接BF,DE為△CBF中位線,求出BF的長,即可確定出DE的長.

證明:如圖

連接AD,

,,

,

,

為圓O的直徑;

與圓O相切,理由為:

證明:連接OD,

、D分別為AB、BC的中點,

的中位線,

,

,

,

為圓的半徑,

與圓O相切;

解:,

為等邊三角形,

,

AC交于點F,連接BF,

為圓O的直徑,

,,

BC中點,

CF中點,即DE中位線,

中,,

根據勾股定理得:,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】操場上有三根測桿AB,MNXYMNXY,其中測桿AB在太陽光下某一時刻的影子為BC(如圖中粗線).

(1)畫出測桿MN在同一時刻的影子NP(用粗線表示),并簡述畫法;

(2)若在同一時刻測桿XY的影子的頂端恰好落在點B處,畫出測桿XY所在的位置(用實線表示),并簡述畫法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BDCD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA

3)當AB=6,AC=8時,求線段PB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,OAx軸的負半軸上,OCy軸的正半軸上.

,

如圖1,將矩形OABC繞點O順時針方向旋轉得到矩形,當點A的對應點落在BC邊上時,求點的坐標;

如圖,將矩形OABC繞點O順時針方向旋得到矩形,當點B的對應點落在軸的正半軸上時,求點的坐標;

,,如圖3,設邊BC交于點E,若,請直接寫出的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現在分別位于點和點處,、均在的中垂線上,且、到大樓的距離分別為米和米,又已知米,米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的矩形CEFD拼在一起,構成一個大的矩形ABEF,現將小矩形CEFD繞點C順時針旋轉至CEFD′,旋轉角為α

1)當點D′恰好落在EF邊上時,求旋轉角α的值;

2)如圖2GBC中點,且0°<α90°,求證:GD′=ED

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷△ABC的形狀,證明你的結論;

(3)點M是拋物線對稱軸上的一個動點,當△ACM周長最小時,求點M的坐標及△ACM的最小周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣(x+1)(x3)x軸分別交于點A、B(AB的右側),與y軸交于點C,P是△ABC的外接圓.

(1)直接寫出點AB、C的坐標及拋物線的對稱軸;

(2)P的半徑;

(3)D在拋物線的對稱軸上,且∠BDC90°,求點D縱坐標的取值范圍;

(4)E是線段CO上的一個動點,將線段AE繞點A逆時針旋轉45°得線段AF,求線段OF的最小值.

查看答案和解析>>

同步練習冊答案