【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),且BC=2AF。
(1)求證:四邊形ADEF為矩形;
(2)若∠C=30°、AF=2,寫(xiě)出矩形ADEF的周長(zhǎng)。
【答案】(1)證明見(jiàn)解析 (2)
【解析】
(1)連接DE.根據(jù)三角形的中位線(xiàn)的性質(zhì)即可得到結(jié)論;
(2)根據(jù)矩形的性質(zhì)得到∠BAC=∠FEC=90°,解直角三角形即可得到結(jié)論.
(1)連接DE,
∵E、F分別是AC,BC中點(diǎn)
∴EF//AB,EF=AB
∵點(diǎn)D是AB中點(diǎn)
∴AD=AB,AD=EF
∴四邊形ADFE為平行四邊形
∵點(diǎn)D、E分別為AB、AC中點(diǎn)
∴DE=BC,
∵BC=2AF
∴DE=AF
∴四邊形ADEF為矩形.
(2)∵四邊形ADFE是矩形,
∴∠BAC=∠FEC=90°,
∵AF=2,F(xiàn)為BC中點(diǎn),
∴BC=4,CF=2,
∵∠C=30°
∴AC=,CE=,EF=1,
∴AE=
∴矩形ADEF的周長(zhǎng)為;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,CE∥BD,DE∥AC.
(1)證明:四邊形OCED為菱形;
(2)若AC=4,求四邊形CODE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,階梯圖的每個(gè)臺(tái)階上都標(biāo)著一個(gè)數(shù),從下到上的第1個(gè)至第4個(gè)臺(tái)階上依次標(biāo)著-5,-2,1,9,且任意相鄰四個(gè)臺(tái)階上數(shù)的和都相等.
(嘗試)(1)求前4個(gè)臺(tái)階上數(shù)的和是多少?
(2)求第5個(gè)臺(tái)階上的數(shù)是多少?
(應(yīng)用)求從下到上前33個(gè)臺(tái)階上數(shù)的和.
(發(fā)現(xiàn))試用含(為正整數(shù))的式子表示出數(shù)“-2”所在的臺(tái)階數(shù)(此問(wèn)直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4,點(diǎn)Q是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線(xiàn)交線(xiàn)段AB(如圖①)或線(xiàn)段AB的延長(zhǎng)線(xiàn)(如圖②)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖中的小正方形的大小相等,圖1只有一個(gè)小正方形;圖2是由4個(gè)小正方形構(gòu)成的一個(gè)正方形;圖3是由9個(gè)小正方形構(gòu)成的一個(gè)正方形,…以此類(lèi)推,每一個(gè)圖形都是由小正方形構(gòu)成的大正方形. 回答下列問(wèn)題:
(1)圖2比圖1多________個(gè)小正方形,圖3比圖2多________個(gè)小正方形.
(2)圖比圖多________個(gè)小正方形(用含的式子表示)
(3)猜想________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校通過(guò)初評(píng)決定最后從甲、乙、丙三個(gè)班中推薦一個(gè)班為縣級(jí)先進(jìn)班集體,下表是三個(gè)班的五項(xiàng)素質(zhì)考評(píng)得分表。
五項(xiàng)素質(zhì)考評(píng)得分表(單位:分)
班級(jí) | 行為規(guī)范 | 學(xué)習(xí)成績(jī) | 校運(yùn)動(dòng)會(huì) | 藝術(shù)獲獎(jiǎng) | 勞動(dòng)衛(wèi)生 |
甲班 | 10 | 10 | 6 | 10 | 7 |
乙班 | 10 | 8 | 8 | 9 | 8 |
丙班 | 9 | 10 | 9 | 6 | 9 |
根據(jù)統(tǒng)計(jì)表中的信息回答下列問(wèn)題:
(1)請(qǐng)你補(bǔ)全五項(xiàng)成績(jī)考評(píng)分析表中的數(shù)據(jù):
班級(jí) | 平均分 | 眾數(shù) | 中位數(shù) |
甲班 | 8.6 | 10 | ③ |
乙班 | 8.6 | ② | 8 |
丙班 | ① | 9 | 9 |
(2)參照上表中的數(shù)據(jù),你推薦哪個(gè)班為縣級(jí)先進(jìn)班集體?并說(shuō)明理由。
(3)如果學(xué)校把行為規(guī)范、學(xué)習(xí)成績(jī)、校運(yùn)動(dòng)會(huì)、藝術(shù)獲獎(jiǎng)、勞動(dòng)衛(wèi)生五項(xiàng)考評(píng)成績(jī)按照3∶2∶1∶1∶3的比確定班級(jí)的綜合成績(jī),學(xué)生處的李老師根據(jù)這個(gè)綜合成績(jī),繪制了一幅不完整的條形統(tǒng)計(jì)圖,請(qǐng)將這個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,按照這個(gè)成績(jī),應(yīng)推薦哪個(gè)班為縣級(jí)先進(jìn)班集體?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線(xiàn)與
(1)在同一平面直角坐標(biāo)系中作出兩直線(xiàn)的圖象;
(2)求出兩直線(xiàn)的交點(diǎn);
(3)根據(jù)圖象指出x為何值時(shí),;
(4)求這兩條直線(xiàn)與x軸圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)過(guò)幾秒,使△PBQ的面積等于8cm2?
(2)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),線(xiàn)段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.
(3)若P點(diǎn)沿射線(xiàn)AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn)Q沿射線(xiàn)CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P,Q同時(shí)出發(fā),問(wèn)幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)5000名九年級(jí)學(xué)生體育成績(jī)狀況,隨機(jī)抽取了若干名學(xué)生進(jìn)行測(cè)試,將成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,一共抽取了______名學(xué)生;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)估計(jì)該地區(qū)九年級(jí)學(xué)生體育成績(jī)?yōu)?/span>B級(jí)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com