【題目】如圖,矩形ABCD的對角線AC、BD交于點O,CE∥BD,DE∥AC.
(1)證明:四邊形OCED為菱形;
(2)若AC=4,求四邊形CODE的周長.
【答案】(1)見解析; (2)8.
【解析】(1)由CE∥BD,DE∥AC可得四邊形OCED是平行四邊形,由四邊形ABCD是矩形可得OD=OC,從而可得平行四邊形OCED是菱形;
(2)由AC=4,四邊形ABCD是矩形可得OC=2,結(jié)合四邊形CODE是菱形可得四邊形CODE的周長是:2×4=8.
(1)∵CE∥BD,DE∥AC,
∴四邊形CODE為平行四邊形,
∵四邊形ABCD是矩形,
∴OD=OC,
∴四邊形CODE為菱形;
(2)∵四邊形ABCD是矩形,
∴OC=OD=AC,
又∵AC=4,
∴OC=2,
由(1)知,四邊形CODE為菱形,
∴四邊形CODE的周長為=4OC=2×4=8.
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD的對角線相交于O,給出下列 5個條件:①AB∥CD ;②AD∥BC;③AB=CD ;④∠BAD=∠BCD;⑤OA=OC.從以上5個條件中任選 2個條件為一組,能推出四邊形ABCD為平行四邊形的有( )
A. 4組 B. 5組 C. 6組 D. 7組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,將△ABE沿AE所在直線翻折得△AB′E,AB′與CD邊交于點F,則B′F的長度為( )
A. 1 B. C. 2-2 D. 2-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,描述了林老師某日傍晚的一段生活過程:他晚飯后,從家里散步走到超市,在超市停留了一會兒,馬上又去書店,看了一會兒書,然后快步走回家,圖象中的平面直角坐標系中x表示時間,y表示林老師離家的距離,請你認真研讀這個圖象,根據(jù)圖象提供的信息,以下說法錯誤的是( )
A. 林老師家距超市1.5千米
B. 林老師在書店停留了30分鐘
C. 林老師從家里到超市的平均速度與從超市到書店的平均速度是相等的
D. 林老師從書店到家的平均速度是10千米/時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB的邊OA上有一動點P,從距離O點18cm的點M處出發(fā),沿線段MO,射線OB運動,速度為2cm/s;動點Q從點O出發(fā),沿射線OB運動,速度為1cm/s.P、Q同時出發(fā),設運動時間是t(s).
(1)當點P在MO上運動時,PO= cm (用含t的代數(shù)式表示);
(2)當點P在MO上運動時,t為何值,能使OP=OQ?
(3)若點Q運動到距離O點16cm的點N處停止,在點Q停止運動前,點P能否追上點Q?如果能,求出t的值;如果不能,請說出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正方形ABCD對角線AC上一點,點E在BC上,且PE=PB.
(1)求證:PE=PD;
(2)連接DE,試判斷∠PED的度數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于a、b定義兩種新運算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k為常數(shù),且k≠0).若平面直角坐標系xOy中的點P(a,b),有點P的坐標為(a*b,a⊕b)與之相對應,則稱點P為點P的“k衍生點”
例如:P(1,4)的“2衍生點”為P′(l+2×4,2×1+4),即P′(9,6).
(1)點P(﹣1,6)的“2衍生點”P′的坐標為 .
(2)若點P的“3衍生點”P′的坐標為(5,7),求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠3=∠E.試說明:∠A=∠EBC.(請按圖填空,并補理由.)
證明:∵∠1=∠2 (已知),
∴________∥_______( ),
∴∠E=∠_______ ( ),
又∵∠E=∠3 (已知),
∴∠3=∠____________ ( 等量代換 ),
∴_________∥________ (內(nèi)錯角相等,兩直線平行),
∴∠A=∠EBC ( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com