【題目】如圖,已知在正方形ABCD,FCD邊上一點(不與C、D重合),過點DDGBFBF延長線于點G連接AG,BD于點ECD于點M,連接EFDG=4AG=,EF的長為____________

【答案】

【解析】試題分析:

如圖作AHBGHBCT,ANGDN,取BD的中點O,連接OA、OG

∴∠BAD=∠BGD=90°,

OAODOBOG,

ABG、D四點共圓,

∴∠AGB=∠ADB=45°,∠AGD=∠ABD=45°,

AHGH,ANNG

∵∠N=∠AHG=∠HGN=90°,

∴四邊形ANGH是矩形,∵AHHG,

∴四邊形ANGH是正方形,

AG,

AHHGGNAN=5,

易證△AND≌△AHB

DNBH,

GDGBGNDNGHBH=2GN=10,

∴4+GB=10,

GB6BD,

BH=1,

∵△BHT∽△AHB,

BH2AHHT,

HT

ATAHTH,

易證△ABT≌△BCF,

ATBF,

∵△BEF∽△BGD

,

,

EF

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將直角三角形的直角頂點放在點處,兩直角邊與坐標(biāo)軸交于如圖所示的點和點,則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張完全相同的長方形紙片(長為12,寬為4)如圖疊放在一起,重疊部分為四邊形ABCD,則四邊形ABCD的周長最大值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=5,AB邊上的高CD=4,點P從點A出發(fā),沿AB以每秒3個單位長度的速度向終點B運動,當(dāng)點P不與點A、B重合時,過點PPQAB,交邊AC或邊BC于點Q,以PQ為邊向右側(cè)作正方形PQMN.設(shè)正方形PQMNABC重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).

1)直接寫出tanB的值為   

2)求點M落在邊BC上時t的值.

3)當(dāng)正方形PQMNABC重疊部分為四邊形時,求St之間的函數(shù)關(guān)系式.

4)邊BC將正方形PQMN的面積分為13兩部分時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABCD 的四條邊為邊,分別向外作正方形,連結(jié) EF,GHIJ,KL.如果ABCD 面積為 8,則圖中陰影部分四個三角形的面積和為(

A.8B.12C.16D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,我們的生活越來越方便,越來越多的人在網(wǎng)絡(luò)上購物微商這個行業(yè)也悄然興起,很多人通過微信平臺銷售商品

1)某水果微商今年九月購進榴蓮和奇異果共1000千克,它們的進價均為每千克24 然后以榴蓮售價每千克45,奇異果售價每千克36元的價格很快銷售完,若該水果微商九月獲利不低于17400求應(yīng)購進榴蓮至少多少千克?

2)為了增加銷售量獲得更大的利潤,在進價不變的情況下,該水果微商十月決定調(diào)整售價,榴蓮的售價在九月的基礎(chǔ)上下調(diào)(降價后的售價不低于進價),奇異果的售價在九月的基礎(chǔ)上上漲,同時,與(1)中獲得的最低利潤時的銷售量相比,榴蓮的銷售量下降了,而奇異果的銷售量上升了,結(jié)果十月的銷售額比九月增加了600元.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D. 下列結(jié)論:AD是∠BAC的平分線;②點DAB的垂直平分線上;③∠ADC=60°;④。其中正確的結(jié)論有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學(xué)校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB兩地相距4800米,甲從A地出發(fā)步行到B地,20分鐘后乙從B地出發(fā)騎自行車到A地,設(shè)甲步行的時間為x分鐘,甲、乙兩人離A地的距離分別為米、米,、x的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:

1直接寫出yyx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)求甲出發(fā)后多少分鐘兩人相遇,相遇時乙離A地多少米?

查看答案和解析>>

同步練習(xí)冊答案